Loading…
Fabrication of Paper‐Derived Ti3SiC2‐Based Materials by Spark Plasma Sintering
Novel paper‐derived Ti3SiC2‐based ceramics are fabricated by spark plasma sintering (SPS). A Ti3SiC2‐loaded preceramic article is used as feedstock. The sintering temperature and pressure are 1100–1200 °C and 20–50 MPa, respectively. The influence of sintering parameters on phase composition and mic...
Saved in:
Published in: | Advanced engineering materials 2020-06, Vol.22 (6), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel paper‐derived Ti3SiC2‐based ceramics are fabricated by spark plasma sintering (SPS). A Ti3SiC2‐loaded preceramic article is used as feedstock. The sintering temperature and pressure are 1100–1200 °C and 20–50 MPa, respectively. The influence of sintering parameters on phase composition and microstructure is analyzed by X‐ray diffraction (XRD) and scanning electron microscopy, respectively. In addition, energy‐dispersive X‐ray spectroscopy is conducted to analyze the distribution of elements and the phase arrangement depending on the sintering temperature. XRD analysis of the composites sintered at 1100 and 1200 °C shows the presence of Ti3SiC2, TiC, and TiSi2 phases while the content of Ti3SiC2 phase decreases with increasing temperature. It is shown that an increase in both temperature and pressure lead to higher densification of the composites. Elongated pores are observed in the composites, which are formed as a result of cellulose fiber decomposition during the sintering process. The maximal value of the flexural strength of 300 MPa is measured for the composite with the highest density. The influence of SPS parameters on the formation of phase composition, microstructure, and mechanical properties of the paper‐derived Ti3SiC2‐based ceramics is discussed.
Novel paper‐derived Ti3SiC2‐based composites are fabricated by spark plasma sintering (SPS). The effects of sintering parameters (temperature and pressure) on microstructure, phase composition, and mechanical properties of the composites are described. Furthermore, it is shown that SPS and residual carbon from the organic components of preceramic paper significantly affect the phase composition of composites. |
---|---|
ISSN: | 1438-1656 1527-2648 |
DOI: | 10.1002/adem.202000136 |