Loading…
The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective
The development of new insertion electrodes in sodium‐ion batteries requires an in‐depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X‐ray and neutron diffraction methods appear to be the only probes o...
Saved in:
Published in: | Advanced functional materials 2015-08, Vol.25 (31), p.4994-5005 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5005 |
container_issue | 31 |
container_start_page | 4994 |
container_title | Advanced functional materials |
container_volume | 25 |
creator | Sharma, Neeraj Gonzalo, Elena Pramudita, James C. Han, Man Huon Brand, Helen E. A. Hart, Judy N. Pang, Wei Kong Guo, Zaiping Rojo, Teófilo |
description | The development of new insertion electrodes in sodium‐ion batteries requires an in‐depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X‐ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3‐phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3‐phase persists throughout the charge/discharge cycle but undergoes a series of two‐phase and solid‐solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space‐group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two‐phase and solid‐solution phase transitions simultaneously. The Mn/Fe–O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3‐phase throughout the charge/discharge process.
O3‐Na2/3Fe2/3Mn1/3O2 undergoes sequential reactions during charge and discharge but maintains the same O3 structural motif. This has direct implications on the electrochemical performance of this polymorph. Rietveld refinements and calculations are used to show the sodium content evolution of this cathode in a functioning sodium‐ion battery. |
doi_str_mv | 10.1002/adfm.201501655 |
format | article |
fullrecord | <record><control><sourceid>istex_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_adfm_201501655_ADFM201501655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_0LHK0DF1_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2435-abeae98eddb40b93af68dbe36d931bad976cff5be0b6cdc1f9a212dbe0210a393</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v16nn_AGU_ChRvDS2tsV-xbfS2WdihrFLQBao9-s-l1nCZeSd5nzk8CN1T0qOEMFuqZN9jhDqEuo5zgTrUpa7FCRtctpm-XqObsnwjhHoe73fQzyYFvM31Zw14XZk6rmojMzw-FFld6SLHRYKrprLk1iqVJeCFZDYPoRnznNp8ybCqjc53eKp3KX6WFeAglWYH9kiX8V96wEO8LpSu91YAeWVA4RWY8gPiSh_gFl0lMivh7n930TYcb4KpNVtOHoPhzNKszx1LRiDBH4BSUZ9EPpeJO1ARcFf5nEZS-Z4bJ4kTAYncWMU08SWjrGkQRonkPu8i__z3S2dwFB9G76U5CkrEyZ442ROtPTEchfP2aljrzOqygu-WleZduB73HPGymAgymz6RUUjFhP8CvPR1oQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sharma, Neeraj ; Gonzalo, Elena ; Pramudita, James C. ; Han, Man Huon ; Brand, Helen E. A. ; Hart, Judy N. ; Pang, Wei Kong ; Guo, Zaiping ; Rojo, Teófilo</creator><creatorcontrib>Sharma, Neeraj ; Gonzalo, Elena ; Pramudita, James C. ; Han, Man Huon ; Brand, Helen E. A. ; Hart, Judy N. ; Pang, Wei Kong ; Guo, Zaiping ; Rojo, Teófilo</creatorcontrib><description>The development of new insertion electrodes in sodium‐ion batteries requires an in‐depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X‐ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3‐phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3‐phase persists throughout the charge/discharge cycle but undergoes a series of two‐phase and solid‐solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space‐group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two‐phase and solid‐solution phase transitions simultaneously. The Mn/Fe–O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3‐phase throughout the charge/discharge process.
O3‐Na2/3Fe2/3Mn1/3O2 undergoes sequential reactions during charge and discharge but maintains the same O3 structural motif. This has direct implications on the electrochemical performance of this polymorph. Rietveld refinements and calculations are used to show the sodium content evolution of this cathode in a functioning sodium‐ion battery.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201501655</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>layered oxides ; positive electrode ; sodium-ion batteries ; X-ray diffraction</subject><ispartof>Advanced functional materials, 2015-08, Vol.25 (31), p.4994-5005</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Gonzalo, Elena</creatorcontrib><creatorcontrib>Pramudita, James C.</creatorcontrib><creatorcontrib>Han, Man Huon</creatorcontrib><creatorcontrib>Brand, Helen E. A.</creatorcontrib><creatorcontrib>Hart, Judy N.</creatorcontrib><creatorcontrib>Pang, Wei Kong</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Rojo, Teófilo</creatorcontrib><title>The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The development of new insertion electrodes in sodium‐ion batteries requires an in‐depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X‐ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3‐phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3‐phase persists throughout the charge/discharge cycle but undergoes a series of two‐phase and solid‐solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space‐group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two‐phase and solid‐solution phase transitions simultaneously. The Mn/Fe–O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3‐phase throughout the charge/discharge process.
O3‐Na2/3Fe2/3Mn1/3O2 undergoes sequential reactions during charge and discharge but maintains the same O3 structural motif. This has direct implications on the electrochemical performance of this polymorph. Rietveld refinements and calculations are used to show the sodium content evolution of this cathode in a functioning sodium‐ion battery.</description><subject>layered oxides</subject><subject>positive electrode</subject><subject>sodium-ion batteries</subject><subject>X-ray diffraction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhjdGE2v16nn_AGU_ChRvDS2tsV-xbfS2WdihrFLQBao9-s-l1nCZeSd5nzk8CN1T0qOEMFuqZN9jhDqEuo5zgTrUpa7FCRtctpm-XqObsnwjhHoe73fQzyYFvM31Zw14XZk6rmojMzw-FFld6SLHRYKrprLk1iqVJeCFZDYPoRnznNp8ybCqjc53eKp3KX6WFeAglWYH9kiX8V96wEO8LpSu91YAeWVA4RWY8gPiSh_gFl0lMivh7n930TYcb4KpNVtOHoPhzNKszx1LRiDBH4BSUZ9EPpeJO1ARcFf5nEZS-Z4bJ4kTAYncWMU08SWjrGkQRonkPu8i__z3S2dwFB9G76U5CkrEyZ442ROtPTEchfP2aljrzOqygu-WleZduB73HPGymAgymz6RUUjFhP8CvPR1oQ</recordid><startdate>20150819</startdate><enddate>20150819</enddate><creator>Sharma, Neeraj</creator><creator>Gonzalo, Elena</creator><creator>Pramudita, James C.</creator><creator>Han, Man Huon</creator><creator>Brand, Helen E. A.</creator><creator>Hart, Judy N.</creator><creator>Pang, Wei Kong</creator><creator>Guo, Zaiping</creator><creator>Rojo, Teófilo</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>20150819</creationdate><title>The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective</title><author>Sharma, Neeraj ; Gonzalo, Elena ; Pramudita, James C. ; Han, Man Huon ; Brand, Helen E. A. ; Hart, Judy N. ; Pang, Wei Kong ; Guo, Zaiping ; Rojo, Teófilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2435-abeae98eddb40b93af68dbe36d931bad976cff5be0b6cdc1f9a212dbe0210a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>layered oxides</topic><topic>positive electrode</topic><topic>sodium-ion batteries</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Gonzalo, Elena</creatorcontrib><creatorcontrib>Pramudita, James C.</creatorcontrib><creatorcontrib>Han, Man Huon</creatorcontrib><creatorcontrib>Brand, Helen E. A.</creatorcontrib><creatorcontrib>Hart, Judy N.</creatorcontrib><creatorcontrib>Pang, Wei Kong</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Rojo, Teófilo</creatorcontrib><collection>Istex</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Neeraj</au><au>Gonzalo, Elena</au><au>Pramudita, James C.</au><au>Han, Man Huon</au><au>Brand, Helen E. A.</au><au>Hart, Judy N.</au><au>Pang, Wei Kong</au><au>Guo, Zaiping</au><au>Rojo, Teófilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2015-08-19</date><risdate>2015</risdate><volume>25</volume><issue>31</issue><spage>4994</spage><epage>5005</epage><pages>4994-5005</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The development of new insertion electrodes in sodium‐ion batteries requires an in‐depth understanding of the relationship between electrochemical performance and the structural evolution during cycling. To date in situ synchrotron X‐ray and neutron diffraction methods appear to be the only probes of in situ electrode evolution at high rates, a critical condition for battery development. Here, the structural evolution of the recently synthesized O3‐phase of Na2/3Fe2/3Mn1/3O2 is reported under relatively high current rates. The evolution of the phases, their lattice parameters, and phase fractions, and the sodium content in the crystal structure as a function of the charge/discharge process are shown. It is found that the O3‐phase persists throughout the charge/discharge cycle but undergoes a series of two‐phase and solid‐solution transitions subtly modifying the sodium content and atomic positions but keeping the overall space‐group symmetry (structural motif). In addition, for the first time, evidence of a structurally characterized region is shown that undergoes two‐phase and solid‐solution phase transitions simultaneously. The Mn/Fe–O bond lengths, c lattice parameter evolution, and the distance between the Mn/FeO6 layers are shown to concertedly change in a favorable manner for Na+ insertion/extraction. The exceptional electrochemical performance of this electrode can be related in part to the electrode maintaining the O3‐phase throughout the charge/discharge process.
O3‐Na2/3Fe2/3Mn1/3O2 undergoes sequential reactions during charge and discharge but maintains the same O3 structural motif. This has direct implications on the electrochemical performance of this polymorph. Rietveld refinements and calculations are used to show the sodium content evolution of this cathode in a functioning sodium‐ion battery.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201501655</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2015-08, Vol.25 (31), p.4994-5005 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_wiley_primary_10_1002_adfm_201501655_ADFM201501655 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | layered oxides positive electrode sodium-ion batteries X-ray diffraction |
title | The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 during High Rate Charge/Discharge: A Sodium-Centred Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Unique%20Structural%20Evolution%20of%20the%20O3-Phase%20Na2/3Fe2/3Mn1/3O2%20during%20High%20Rate%20Charge/Discharge:%20A%20Sodium-Centred%20Perspective&rft.jtitle=Advanced%20functional%20materials&rft.au=Sharma,%20Neeraj&rft.date=2015-08-19&rft.volume=25&rft.issue=31&rft.spage=4994&rft.epage=5005&rft.pages=4994-5005&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201501655&rft_dat=%3Cistex_wiley%3Eark_67375_WNG_0LHK0DF1_G%3C/istex_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2435-abeae98eddb40b93af68dbe36d931bad976cff5be0b6cdc1f9a212dbe0210a393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |