Loading…

Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)

On page 6111, X. Chen and co‐workers report for the first time a protocol to grow ultralong TiO2‐based nanotubes from tiny TiO2 nanoparticles by a stirring hydrothermal method. The study confirms that the mechanical‐force‐driven stirring process is the reason for the lengthening of the nanotubes. Th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2014-09, Vol.26 (35), p.6046-6046
Main Authors: Tang, Yuxin, Zhang, Yanyan, Deng, Jiyang, Wei, Jiaqi, Tam, Hong Le, Chandran, Bevita Kallupalathinkal, Dong, Zhili, Chen, Zhong, Chen, Xiaodong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6046
container_issue 35
container_start_page 6046
container_title Advanced materials (Weinheim)
container_volume 26
creator Tang, Yuxin
Zhang, Yanyan
Deng, Jiyang
Wei, Jiaqi
Tam, Hong Le
Chandran, Bevita Kallupalathinkal
Dong, Zhili
Chen, Zhong
Chen, Xiaodong
description On page 6111, X. Chen and co‐workers report for the first time a protocol to grow ultralong TiO2‐based nanotubes from tiny TiO2 nanoparticles by a stirring hydrothermal method. The study confirms that the mechanical‐force‐driven stirring process is the reason for the lengthening of the nanotubes. This protocol to synthesize elongated nanostructures can be extended to other nanostructured systems, opening up new opportunities for manufacturing advanced functional materials for high‐performance energy‐storage devices.
doi_str_mv 10.1002/adma.201470238
format article
fullrecord <record><control><sourceid>istex_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_adma_201470238_ADMA201470238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_SF7BXKZ2_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1948-a5b663ba29f56a9924dc5c059fddd40b9d2b65ab5e715ea3beffb6875d92a3fc3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuWxZe0lLFIcO3Zidm2hBdFSCVqB2Fjj2G4NaYKclMcP8Z00KupqNKM5ZzQXobOYdGNC6CWYFXQpiZOUUJbtoU7MaRwlRPJ91CGS8UiKJDtER3X9RgiRgogO-n2AsmrW2tZXeGLzJZQ-hwIPq5Db6Dr4T1viUai-miWuHL4pqnIBjTW4b0vjywWe-SmNNNSb0b9pXUDAk81S8FDU2FUBz4smgIO6wY_tibCwoAuLx75Z-vUK31Ul7kPTErbG5z3z2d0Kupjxy_ajixN04DY2e_pfj9F8eDMb3Ebj6ehu0BtHPpZJFgHXQjANVDouQEqamJznhEtnjEmIloZqwUFzm8bcAtPWOS2ylBtJgbmcHSO59X75wv6oj-BXEH5UTFQbsWojVruIVe960tt1Gzbasr5u7PeOhfCuRMpSrp4fRuppmPZf7l-pytgfDqGDIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)</title><source>Wiley</source><creator>Tang, Yuxin ; Zhang, Yanyan ; Deng, Jiyang ; Wei, Jiaqi ; Tam, Hong Le ; Chandran, Bevita Kallupalathinkal ; Dong, Zhili ; Chen, Zhong ; Chen, Xiaodong</creator><creatorcontrib>Tang, Yuxin ; Zhang, Yanyan ; Deng, Jiyang ; Wei, Jiaqi ; Tam, Hong Le ; Chandran, Bevita Kallupalathinkal ; Dong, Zhili ; Chen, Zhong ; Chen, Xiaodong</creatorcontrib><description>On page 6111, X. Chen and co‐workers report for the first time a protocol to grow ultralong TiO2‐based nanotubes from tiny TiO2 nanoparticles by a stirring hydrothermal method. The study confirms that the mechanical‐force‐driven stirring process is the reason for the lengthening of the nanotubes. This protocol to synthesize elongated nanostructures can be extended to other nanostructured systems, opening up new opportunities for manufacturing advanced functional materials for high‐performance energy‐storage devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201470238</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>elongated nanostructures ; hydrothermal methods ; lithium ion batteries ; mechanical force ; nanotubes ; TiO2(B)</subject><ispartof>Advanced materials (Weinheim), 2014-09, Vol.26 (35), p.6046-6046</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Yuxin</creatorcontrib><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Deng, Jiyang</creatorcontrib><creatorcontrib>Wei, Jiaqi</creatorcontrib><creatorcontrib>Tam, Hong Le</creatorcontrib><creatorcontrib>Chandran, Bevita Kallupalathinkal</creatorcontrib><creatorcontrib>Dong, Zhili</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><title>Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>On page 6111, X. Chen and co‐workers report for the first time a protocol to grow ultralong TiO2‐based nanotubes from tiny TiO2 nanoparticles by a stirring hydrothermal method. The study confirms that the mechanical‐force‐driven stirring process is the reason for the lengthening of the nanotubes. This protocol to synthesize elongated nanostructures can be extended to other nanostructured systems, opening up new opportunities for manufacturing advanced functional materials for high‐performance energy‐storage devices.</description><subject>elongated nanostructures</subject><subject>hydrothermal methods</subject><subject>lithium ion batteries</subject><subject>mechanical force</subject><subject>nanotubes</subject><subject>TiO2(B)</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuWxZe0lLFIcO3Zidm2hBdFSCVqB2Fjj2G4NaYKclMcP8Z00KupqNKM5ZzQXobOYdGNC6CWYFXQpiZOUUJbtoU7MaRwlRPJ91CGS8UiKJDtER3X9RgiRgogO-n2AsmrW2tZXeGLzJZQ-hwIPq5Db6Dr4T1viUai-miWuHL4pqnIBjTW4b0vjywWe-SmNNNSb0b9pXUDAk81S8FDU2FUBz4smgIO6wY_tibCwoAuLx75Z-vUK31Ul7kPTErbG5z3z2d0Kupjxy_ajixN04DY2e_pfj9F8eDMb3Ebj6ehu0BtHPpZJFgHXQjANVDouQEqamJznhEtnjEmIloZqwUFzm8bcAtPWOS2ylBtJgbmcHSO59X75wv6oj-BXEH5UTFQbsWojVruIVe960tt1Gzbasr5u7PeOhfCuRMpSrp4fRuppmPZf7l-pytgfDqGDIw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Tang, Yuxin</creator><creator>Zhang, Yanyan</creator><creator>Deng, Jiyang</creator><creator>Wei, Jiaqi</creator><creator>Tam, Hong Le</creator><creator>Chandran, Bevita Kallupalathinkal</creator><creator>Dong, Zhili</creator><creator>Chen, Zhong</creator><creator>Chen, Xiaodong</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>201409</creationdate><title>Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)</title><author>Tang, Yuxin ; Zhang, Yanyan ; Deng, Jiyang ; Wei, Jiaqi ; Tam, Hong Le ; Chandran, Bevita Kallupalathinkal ; Dong, Zhili ; Chen, Zhong ; Chen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1948-a5b663ba29f56a9924dc5c059fddd40b9d2b65ab5e715ea3beffb6875d92a3fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>elongated nanostructures</topic><topic>hydrothermal methods</topic><topic>lithium ion batteries</topic><topic>mechanical force</topic><topic>nanotubes</topic><topic>TiO2(B)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yuxin</creatorcontrib><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Deng, Jiyang</creatorcontrib><creatorcontrib>Wei, Jiaqi</creatorcontrib><creatorcontrib>Tam, Hong Le</creatorcontrib><creatorcontrib>Chandran, Bevita Kallupalathinkal</creatorcontrib><creatorcontrib>Dong, Zhili</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><collection>Istex</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yuxin</au><au>Zhang, Yanyan</au><au>Deng, Jiyang</au><au>Wei, Jiaqi</au><au>Tam, Hong Le</au><au>Chandran, Bevita Kallupalathinkal</au><au>Dong, Zhili</au><au>Chen, Zhong</au><au>Chen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2014-09</date><risdate>2014</risdate><volume>26</volume><issue>35</issue><spage>6046</spage><epage>6046</epage><pages>6046-6046</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>On page 6111, X. Chen and co‐workers report for the first time a protocol to grow ultralong TiO2‐based nanotubes from tiny TiO2 nanoparticles by a stirring hydrothermal method. The study confirms that the mechanical‐force‐driven stirring process is the reason for the lengthening of the nanotubes. This protocol to synthesize elongated nanostructures can be extended to other nanostructured systems, opening up new opportunities for manufacturing advanced functional materials for high‐performance energy‐storage devices.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adma.201470238</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2014-09, Vol.26 (35), p.6046-6046
issn 0935-9648
1521-4095
language eng
recordid cdi_wiley_primary_10_1002_adma_201470238_ADMA201470238
source Wiley
subjects elongated nanostructures
hydrothermal methods
lithium ion batteries
mechanical force
nanotubes
TiO2(B)
title Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotubes:%20Mechanical%20Force-Driven%20Growth%20of%20Elongated%20Bending%20TiO2-based%20Nanotubular%20Materials%20for%20Ultrafast%20Rechargeable%20Lithium%20Ion%20Batteries%20(Adv.%20Mater.%2035/2014)&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Tang,%20Yuxin&rft.date=2014-09&rft.volume=26&rft.issue=35&rft.spage=6046&rft.epage=6046&rft.pages=6046-6046&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201470238&rft_dat=%3Cistex_wiley%3Eark_67375_WNG_SF7BXKZ2_8%3C/istex_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1948-a5b663ba29f56a9924dc5c059fddd40b9d2b65ab5e715ea3beffb6875d92a3fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true