Loading…

Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras

In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For F...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 1999, Vol.204 (1), p.83-100
Main Authors: Gramsch, Bernhard, Kaballo, Winfried
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 100
container_issue 1
container_start_page 83
container_title Mathematische Nachrichten
container_volume 204
creator Gramsch, Bernhard
Kaballo, Winfried
description In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.
doi_str_mv 10.1002/mana.19992040106
format article
fullrecord <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1002_mana_19992040106_MANA19992040106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA19992040106</sourcerecordid><originalsourceid>FETCH-LOGICAL-i926-cae8fac760ec44f6af01c183ad0d8828f5e1bc2885366be73a1826a5deb945a93</originalsourceid><addsrcrecordid>eNpNkE1OwzAYRC0EEqGwZ5kLpNhO7NgLFlFLW1B_BFQCsbG-OA41JHGUpEBvwO24Eq2KUFejkebN4iF0SXCfYEyvSqigT6SUFEeYYH6EPMIoDSgn_Bh52wkLmIieT9FZ275hjKWMuYcWs3XR2bqwGjr7Yfyh0a6sXWs766rWd7k_cYUrXVOvrPZHjclWrij90brS-wVUmf_zHSTFq0kbaM_RSQ5Fay7-soeWo5vlYBJMF-PbQTINrKQ80GBEDjrm2OgoyjnkmGgiQshwJgQVOTMk1VQIFnKemjgEIigHlplURgxk2EPX-9tPW5iNqhtbQrNRBKudDLWToQ5kqFkyTw76lg_2vG078_XPQ_OueBzGTD3Nx-ruhYv7IX9Qj-Evk2ln8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Gramsch, Bernhard ; Kaballo, Winfried</creator><creatorcontrib>Gramsch, Bernhard ; Kaballo, Winfried</creatorcontrib><description>In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.19992040106</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Fredholm functions ; Oka's principle ; small ideals ; ψ-algebras ; ψ‐algebras, small ideals</subject><ispartof>Mathematische Nachrichten, 1999, Vol.204 (1), p.83-100</ispartof><rights>Copyright © 1999 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.19992040106$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.19992040106$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,50859,50968</link.rule.ids></links><search><creatorcontrib>Gramsch, Bernhard</creatorcontrib><creatorcontrib>Kaballo, Winfried</creatorcontrib><title>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.</description><subject>Fredholm functions</subject><subject>Oka's principle</subject><subject>small ideals</subject><subject>ψ-algebras</subject><subject>ψ‐algebras, small ideals</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAYRC0EEqGwZ5kLpNhO7NgLFlFLW1B_BFQCsbG-OA41JHGUpEBvwO24Eq2KUFejkebN4iF0SXCfYEyvSqigT6SUFEeYYH6EPMIoDSgn_Bh52wkLmIieT9FZ275hjKWMuYcWs3XR2bqwGjr7Yfyh0a6sXWs766rWd7k_cYUrXVOvrPZHjclWrij90brS-wVUmf_zHSTFq0kbaM_RSQ5Fay7-soeWo5vlYBJMF-PbQTINrKQ80GBEDjrm2OgoyjnkmGgiQshwJgQVOTMk1VQIFnKemjgEIigHlplURgxk2EPX-9tPW5iNqhtbQrNRBKudDLWToQ5kqFkyTw76lg_2vG078_XPQ_OueBzGTD3Nx-ruhYv7IX9Qj-Evk2ln8w</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Gramsch, Bernhard</creator><creator>Kaballo, Winfried</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope></search><sort><creationdate>1999</creationdate><title>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</title><author>Gramsch, Bernhard ; Kaballo, Winfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i926-cae8fac760ec44f6af01c183ad0d8828f5e1bc2885366be73a1826a5deb945a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Fredholm functions</topic><topic>Oka's principle</topic><topic>small ideals</topic><topic>ψ-algebras</topic><topic>ψ‐algebras, small ideals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramsch, Bernhard</creatorcontrib><creatorcontrib>Kaballo, Winfried</creatorcontrib><collection>Istex</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramsch, Bernhard</au><au>Kaballo, Winfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>1999</date><risdate>1999</risdate><volume>204</volume><issue>1</issue><spage>83</spage><epage>100</epage><pages>83-100</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.19992040106</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 1999, Vol.204 (1), p.83-100
issn 0025-584X
1522-2616
language eng
recordid cdi_wiley_primary_10_1002_mana_19992040106_MANA19992040106
source Wiley Online Library Mathematics Backfiles
subjects Fredholm functions
Oka's principle
small ideals
ψ-algebras
ψ‐algebras, small ideals
title Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20Decompositions%20of%20Holomorphic%20Fredholm%20Functions%20and%20%CF%88-Algebras&rft.jtitle=Mathematische%20Nachrichten&rft.au=Gramsch,%20Bernhard&rft.date=1999&rft.volume=204&rft.issue=1&rft.spage=83&rft.epage=100&rft.pages=83-100&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.19992040106&rft_dat=%3Cwiley_istex%3EMANA19992040106%3C/wiley_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i926-cae8fac760ec44f6af01c183ad0d8828f5e1bc2885366be73a1826a5deb945a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true