Loading…
Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras
In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For F...
Saved in:
Published in: | Mathematische Nachrichten 1999, Vol.204 (1), p.83-100 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 100 |
container_issue | 1 |
container_start_page | 83 |
container_title | Mathematische Nachrichten |
container_volume | 204 |
creator | Gramsch, Bernhard Kaballo, Winfried |
description | In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators. |
doi_str_mv | 10.1002/mana.19992040106 |
format | article |
fullrecord | <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1002_mana_19992040106_MANA19992040106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA19992040106</sourcerecordid><originalsourceid>FETCH-LOGICAL-i926-cae8fac760ec44f6af01c183ad0d8828f5e1bc2885366be73a1826a5deb945a93</originalsourceid><addsrcrecordid>eNpNkE1OwzAYRC0EEqGwZ5kLpNhO7NgLFlFLW1B_BFQCsbG-OA41JHGUpEBvwO24Eq2KUFejkebN4iF0SXCfYEyvSqigT6SUFEeYYH6EPMIoDSgn_Bh52wkLmIieT9FZ275hjKWMuYcWs3XR2bqwGjr7Yfyh0a6sXWs766rWd7k_cYUrXVOvrPZHjclWrij90brS-wVUmf_zHSTFq0kbaM_RSQ5Fay7-soeWo5vlYBJMF-PbQTINrKQ80GBEDjrm2OgoyjnkmGgiQshwJgQVOTMk1VQIFnKemjgEIigHlplURgxk2EPX-9tPW5iNqhtbQrNRBKudDLWToQ5kqFkyTw76lg_2vG078_XPQ_OueBzGTD3Nx-ruhYv7IX9Qj-Evk2ln8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Gramsch, Bernhard ; Kaballo, Winfried</creator><creatorcontrib>Gramsch, Bernhard ; Kaballo, Winfried</creatorcontrib><description>In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.19992040106</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Fredholm functions ; Oka's principle ; small ideals ; ψ-algebras ; ψ‐algebras, small ideals</subject><ispartof>Mathematische Nachrichten, 1999, Vol.204 (1), p.83-100</ispartof><rights>Copyright © 1999 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.19992040106$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.19992040106$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,50859,50968</link.rule.ids></links><search><creatorcontrib>Gramsch, Bernhard</creatorcontrib><creatorcontrib>Kaballo, Winfried</creatorcontrib><title>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.</description><subject>Fredholm functions</subject><subject>Oka's principle</subject><subject>small ideals</subject><subject>ψ-algebras</subject><subject>ψ‐algebras, small ideals</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAYRC0EEqGwZ5kLpNhO7NgLFlFLW1B_BFQCsbG-OA41JHGUpEBvwO24Eq2KUFejkebN4iF0SXCfYEyvSqigT6SUFEeYYH6EPMIoDSgn_Bh52wkLmIieT9FZ275hjKWMuYcWs3XR2bqwGjr7Yfyh0a6sXWs766rWd7k_cYUrXVOvrPZHjclWrij90brS-wVUmf_zHSTFq0kbaM_RSQ5Fay7-soeWo5vlYBJMF-PbQTINrKQ80GBEDjrm2OgoyjnkmGgiQshwJgQVOTMk1VQIFnKemjgEIigHlplURgxk2EPX-9tPW5iNqhtbQrNRBKudDLWToQ5kqFkyTw76lg_2vG078_XPQ_OueBzGTD3Nx-ruhYv7IX9Qj-Evk2ln8w</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Gramsch, Bernhard</creator><creator>Kaballo, Winfried</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope></search><sort><creationdate>1999</creationdate><title>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</title><author>Gramsch, Bernhard ; Kaballo, Winfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i926-cae8fac760ec44f6af01c183ad0d8828f5e1bc2885366be73a1826a5deb945a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Fredholm functions</topic><topic>Oka's principle</topic><topic>small ideals</topic><topic>ψ-algebras</topic><topic>ψ‐algebras, small ideals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramsch, Bernhard</creatorcontrib><creatorcontrib>Kaballo, Winfried</creatorcontrib><collection>Istex</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramsch, Bernhard</au><au>Kaballo, Winfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>1999</date><risdate>1999</risdate><volume>204</volume><issue>1</issue><spage>83</spage><epage>100</epage><pages>83-100</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* ‐ algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.19992040106</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 1999, Vol.204 (1), p.83-100 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_wiley_primary_10_1002_mana_19992040106_MANA19992040106 |
source | Wiley Online Library Mathematics Backfiles |
subjects | Fredholm functions Oka's principle small ideals ψ-algebras ψ‐algebras, small ideals |
title | Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ-Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20Decompositions%20of%20Holomorphic%20Fredholm%20Functions%20and%20%CF%88-Algebras&rft.jtitle=Mathematische%20Nachrichten&rft.au=Gramsch,%20Bernhard&rft.date=1999&rft.volume=204&rft.issue=1&rft.spage=83&rft.epage=100&rft.pages=83-100&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.19992040106&rft_dat=%3Cwiley_istex%3EMANA19992040106%3C/wiley_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i926-cae8fac760ec44f6af01c183ad0d8828f5e1bc2885366be73a1826a5deb945a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |