Loading…

Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)

Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID),...

Full description

Saved in:
Bibliographic Details
Published in:physica status solidi (b) 2020-07, Vol.257 (7), p.n/a
Main Authors: Denecke, Reinhard, Welke, Martin, Huth, Paula, Gräfe, Joachim, Brachwitz, Kerstin, Lorenz, Michael, Grundmann, Marius, Ziese, Michael, Esquinazi, Pablo David, Goering, Eberhard, Schütz, Gisela, Schindler, Karl-Michael, Chassé, Angelika
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 7
container_start_page
container_title physica status solidi (b)
container_volume 257
creator Denecke, Reinhard
Welke, Martin
Huth, Paula
Gräfe, Joachim
Brachwitz, Kerstin
Lorenz, Michael
Grundmann, Marius
Ziese, Michael
Esquinazi, Pablo David
Goering, Eberhard
Schütz, Gisela
Schindler, Karl-Michael
Chassé, Angelika
description Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X‐ray absorption spectroscopy with subsequent X‐ray magnetic circular dichroism (XMCD) and magneto‐optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk‐like properties. This can further be confirmed by bulk‐like XMCD spectra. In remanent magnetization, an in‐plane magnetization with basically no out‐of‐plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in‐plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element‐specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments. Using superconducting quantum interference device (SQUID), magneto‐optic Kerr effect (MOKE), and X‐ray magnetic circular dichroism (XMCD), the magnetic structure of a 200 nm thick (Mn0.5Zn0.5)Fe2O4 layer on SrTiO3 is studied in great detail. SQUID shows integral magnetization values comparable to those published for bulk and film samples. MOKE and XMCD reveal an in‐plane fourfold magnetic anisotropy with easy axes along the [110] directions with important contributions from orbital moments.
doi_str_mv 10.1002/pssb.201900627
format article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_pssb_201900627_PSSB201900627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201900627</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2737-f5ca67440d219fdeb991ae440f306f247aee2659918c0b2de07d7c597ea7cc533</originalsourceid><addsrcrecordid>eNo9j8FLwzAYxYMoWKdXzzluYOf3JU1jjttwKnRUaL14KWmbaGSmpRlI_3s7lF3e4_cOD36E3CIsEYDd9yHUSwaoAFImz0iEgmHMlcBzEgGXEKOS7JJchfAFABI5RmS90x_eHFxDV96F7jB0_Uidp-XnFJkezRBoZ-l85-_e_WJrWJ7QztNiKF3O6RwAF9fkwup9MDf_PSNv28dy8xxn-dPLZpXFPZNcxlY0OpVJAi1DZVtTK4XaTGw5pJYlUhvDUjGtDw3UrDUgW9kIJY2WTSM4nxH19_vj9mas-sF962GsEKqjfnXUr0761WtRrE_EfwE_d04p</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Denecke, Reinhard ; Welke, Martin ; Huth, Paula ; Gräfe, Joachim ; Brachwitz, Kerstin ; Lorenz, Michael ; Grundmann, Marius ; Ziese, Michael ; Esquinazi, Pablo David ; Goering, Eberhard ; Schütz, Gisela ; Schindler, Karl-Michael ; Chassé, Angelika</creator><creatorcontrib>Denecke, Reinhard ; Welke, Martin ; Huth, Paula ; Gräfe, Joachim ; Brachwitz, Kerstin ; Lorenz, Michael ; Grundmann, Marius ; Ziese, Michael ; Esquinazi, Pablo David ; Goering, Eberhard ; Schütz, Gisela ; Schindler, Karl-Michael ; Chassé, Angelika</creatorcontrib><description>Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X‐ray absorption spectroscopy with subsequent X‐ray magnetic circular dichroism (XMCD) and magneto‐optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk‐like properties. This can further be confirmed by bulk‐like XMCD spectra. In remanent magnetization, an in‐plane magnetization with basically no out‐of‐plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in‐plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element‐specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments. Using superconducting quantum interference device (SQUID), magneto‐optic Kerr effect (MOKE), and X‐ray magnetic circular dichroism (XMCD), the magnetic structure of a 200 nm thick (Mn0.5Zn0.5)Fe2O4 layer on SrTiO3 is studied in great detail. SQUID shows integral magnetization values comparable to those published for bulk and film samples. MOKE and XMCD reveal an in‐plane fourfold magnetic anisotropy with easy axes along the [110] directions with important contributions from orbital moments.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201900627</identifier><language>eng</language><subject>magnetic anisotropy ; magneto-optical Kerr effect ; manganese zinc ferrite ; sum rules ; superconducting quantum interference device ; thin films ; X-ray magnetic circular dichroism</subject><ispartof>physica status solidi (b), 2020-07, Vol.257 (7), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2774-6040 ; 0000-0003-3510-6051 ; 0000-0003-1065-5791 ; 0000-0002-4597-5923 ; 0000-0001-8821-246X ; 0000-0001-7827-7526 ; 0000-0002-1676-4692 ; 0000-0003-1082-3935 ; 0000-0003-4600-1095 ; 0000-0001-7554-182X ; 0000-0003-0649-1472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Denecke, Reinhard</creatorcontrib><creatorcontrib>Welke, Martin</creatorcontrib><creatorcontrib>Huth, Paula</creatorcontrib><creatorcontrib>Gräfe, Joachim</creatorcontrib><creatorcontrib>Brachwitz, Kerstin</creatorcontrib><creatorcontrib>Lorenz, Michael</creatorcontrib><creatorcontrib>Grundmann, Marius</creatorcontrib><creatorcontrib>Ziese, Michael</creatorcontrib><creatorcontrib>Esquinazi, Pablo David</creatorcontrib><creatorcontrib>Goering, Eberhard</creatorcontrib><creatorcontrib>Schütz, Gisela</creatorcontrib><creatorcontrib>Schindler, Karl-Michael</creatorcontrib><creatorcontrib>Chassé, Angelika</creatorcontrib><title>Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)</title><title>physica status solidi (b)</title><description>Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X‐ray absorption spectroscopy with subsequent X‐ray magnetic circular dichroism (XMCD) and magneto‐optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk‐like properties. This can further be confirmed by bulk‐like XMCD spectra. In remanent magnetization, an in‐plane magnetization with basically no out‐of‐plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in‐plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element‐specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments. Using superconducting quantum interference device (SQUID), magneto‐optic Kerr effect (MOKE), and X‐ray magnetic circular dichroism (XMCD), the magnetic structure of a 200 nm thick (Mn0.5Zn0.5)Fe2O4 layer on SrTiO3 is studied in great detail. SQUID shows integral magnetization values comparable to those published for bulk and film samples. MOKE and XMCD reveal an in‐plane fourfold magnetic anisotropy with easy axes along the [110] directions with important contributions from orbital moments.</description><subject>magnetic anisotropy</subject><subject>magneto-optical Kerr effect</subject><subject>manganese zinc ferrite</subject><subject>sum rules</subject><subject>superconducting quantum interference device</subject><subject>thin films</subject><subject>X-ray magnetic circular dichroism</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9j8FLwzAYxYMoWKdXzzluYOf3JU1jjttwKnRUaL14KWmbaGSmpRlI_3s7lF3e4_cOD36E3CIsEYDd9yHUSwaoAFImz0iEgmHMlcBzEgGXEKOS7JJchfAFABI5RmS90x_eHFxDV96F7jB0_Uidp-XnFJkezRBoZ-l85-_e_WJrWJ7QztNiKF3O6RwAF9fkwup9MDf_PSNv28dy8xxn-dPLZpXFPZNcxlY0OpVJAi1DZVtTK4XaTGw5pJYlUhvDUjGtDw3UrDUgW9kIJY2WTSM4nxH19_vj9mas-sF962GsEKqjfnXUr0761WtRrE_EfwE_d04p</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Denecke, Reinhard</creator><creator>Welke, Martin</creator><creator>Huth, Paula</creator><creator>Gräfe, Joachim</creator><creator>Brachwitz, Kerstin</creator><creator>Lorenz, Michael</creator><creator>Grundmann, Marius</creator><creator>Ziese, Michael</creator><creator>Esquinazi, Pablo David</creator><creator>Goering, Eberhard</creator><creator>Schütz, Gisela</creator><creator>Schindler, Karl-Michael</creator><creator>Chassé, Angelika</creator><scope>24P</scope><scope>WIN</scope><orcidid>https://orcid.org/0000-0003-2774-6040</orcidid><orcidid>https://orcid.org/0000-0003-3510-6051</orcidid><orcidid>https://orcid.org/0000-0003-1065-5791</orcidid><orcidid>https://orcid.org/0000-0002-4597-5923</orcidid><orcidid>https://orcid.org/0000-0001-8821-246X</orcidid><orcidid>https://orcid.org/0000-0001-7827-7526</orcidid><orcidid>https://orcid.org/0000-0002-1676-4692</orcidid><orcidid>https://orcid.org/0000-0003-1082-3935</orcidid><orcidid>https://orcid.org/0000-0003-4600-1095</orcidid><orcidid>https://orcid.org/0000-0001-7554-182X</orcidid><orcidid>https://orcid.org/0000-0003-0649-1472</orcidid></search><sort><creationdate>202007</creationdate><title>Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)</title><author>Denecke, Reinhard ; Welke, Martin ; Huth, Paula ; Gräfe, Joachim ; Brachwitz, Kerstin ; Lorenz, Michael ; Grundmann, Marius ; Ziese, Michael ; Esquinazi, Pablo David ; Goering, Eberhard ; Schütz, Gisela ; Schindler, Karl-Michael ; Chassé, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2737-f5ca67440d219fdeb991ae440f306f247aee2659918c0b2de07d7c597ea7cc533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>magnetic anisotropy</topic><topic>magneto-optical Kerr effect</topic><topic>manganese zinc ferrite</topic><topic>sum rules</topic><topic>superconducting quantum interference device</topic><topic>thin films</topic><topic>X-ray magnetic circular dichroism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denecke, Reinhard</creatorcontrib><creatorcontrib>Welke, Martin</creatorcontrib><creatorcontrib>Huth, Paula</creatorcontrib><creatorcontrib>Gräfe, Joachim</creatorcontrib><creatorcontrib>Brachwitz, Kerstin</creatorcontrib><creatorcontrib>Lorenz, Michael</creatorcontrib><creatorcontrib>Grundmann, Marius</creatorcontrib><creatorcontrib>Ziese, Michael</creatorcontrib><creatorcontrib>Esquinazi, Pablo David</creatorcontrib><creatorcontrib>Goering, Eberhard</creatorcontrib><creatorcontrib>Schütz, Gisela</creatorcontrib><creatorcontrib>Schindler, Karl-Michael</creatorcontrib><creatorcontrib>Chassé, Angelika</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denecke, Reinhard</au><au>Welke, Martin</au><au>Huth, Paula</au><au>Gräfe, Joachim</au><au>Brachwitz, Kerstin</au><au>Lorenz, Michael</au><au>Grundmann, Marius</au><au>Ziese, Michael</au><au>Esquinazi, Pablo David</au><au>Goering, Eberhard</au><au>Schütz, Gisela</au><au>Schindler, Karl-Michael</au><au>Chassé, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)</atitle><jtitle>physica status solidi (b)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>257</volume><issue>7</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X‐ray absorption spectroscopy with subsequent X‐ray magnetic circular dichroism (XMCD) and magneto‐optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk‐like properties. This can further be confirmed by bulk‐like XMCD spectra. In remanent magnetization, an in‐plane magnetization with basically no out‐of‐plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in‐plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element‐specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments. Using superconducting quantum interference device (SQUID), magneto‐optic Kerr effect (MOKE), and X‐ray magnetic circular dichroism (XMCD), the magnetic structure of a 200 nm thick (Mn0.5Zn0.5)Fe2O4 layer on SrTiO3 is studied in great detail. SQUID shows integral magnetization values comparable to those published for bulk and film samples. MOKE and XMCD reveal an in‐plane fourfold magnetic anisotropy with easy axes along the [110] directions with important contributions from orbital moments.</abstract><doi>10.1002/pssb.201900627</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2774-6040</orcidid><orcidid>https://orcid.org/0000-0003-3510-6051</orcidid><orcidid>https://orcid.org/0000-0003-1065-5791</orcidid><orcidid>https://orcid.org/0000-0002-4597-5923</orcidid><orcidid>https://orcid.org/0000-0001-8821-246X</orcidid><orcidid>https://orcid.org/0000-0001-7827-7526</orcidid><orcidid>https://orcid.org/0000-0002-1676-4692</orcidid><orcidid>https://orcid.org/0000-0003-1082-3935</orcidid><orcidid>https://orcid.org/0000-0003-4600-1095</orcidid><orcidid>https://orcid.org/0000-0001-7554-182X</orcidid><orcidid>https://orcid.org/0000-0003-0649-1472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2020-07, Vol.257 (7), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_wiley_primary_10_1002_pssb_201900627_PSSB201900627
source Wiley-Blackwell Read & Publish Collection
subjects magnetic anisotropy
magneto-optical Kerr effect
manganese zinc ferrite
sum rules
superconducting quantum interference device
thin films
X-ray magnetic circular dichroism
title Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Anisotropy%20in%20Thin%20Layers%20of%20(Mn,Zn)Fe2O4%20on%20SrTiO3%20(001)&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Denecke,%20Reinhard&rft.date=2020-07&rft.volume=257&rft.issue=7&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201900627&rft_dat=%3Cwiley%3EPSSB201900627%3C/wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2737-f5ca67440d219fdeb991ae440f306f247aee2659918c0b2de07d7c597ea7cc533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true