Loading…

Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure

In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of inter...

Full description

Saved in:
Bibliographic Details
Published in:physica status solidi (b) 2024-02, Vol.261 (2), p.n/a
Main Authors: Zheng, Wei, Hong, Dan, Liu, Fu-Sheng, Liu, Zheng-Tang, Liu, Qi-Jun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 2
container_start_page
container_title physica status solidi (b)
container_volume 261
creator Zheng, Wei
Hong, Dan
Liu, Fu-Sheng
Liu, Zheng-Tang
Liu, Qi-Jun
description In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2. The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.
doi_str_mv 10.1002/pssb.202300362
format article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_pssb_202300362_PSSB202300362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202300362</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2872-12602f6855edaed2f8ce665729e660ef65394b6b0412ccc1f753c52cf67c332e3</originalsourceid><addsrcrecordid>eNo9kD1PwzAUAC0EEqGwMvsPpDw_13YyQoGmUlErtcyR4zy3Qc2H4iDUf08qUKfTLTccY48CpgIAn7oQiikCSgCp8YpFQqGIZarENYtAGohFavCW3YXwBQBGSBGxbNlUQ2WP_JVcW3dtGK1t-Ae5g22qUPPW8wzXyO3As2p_4DuqO-rt8N0Tt03JNz2FMMo9u_H2GOjhnxP2-f62m2fxar1Yzp9X8R4Tg7FADeh1ohSVlkr0iSOtlcF0BJDXSqazQhcwE-icE94o6RQ6r42TEklOWPrX_amOdMq7vqptf8oF5OcJ-XlCfpmQb7bbl4vJXxbEUnI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</title><source>Wiley</source><creator>Zheng, Wei ; Hong, Dan ; Liu, Fu-Sheng ; Liu, Zheng-Tang ; Liu, Qi-Jun</creator><creatorcontrib>Zheng, Wei ; Hong, Dan ; Liu, Fu-Sheng ; Liu, Zheng-Tang ; Liu, Qi-Jun</creatorcontrib><description>In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2. The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202300362</identifier><language>eng</language><subject>ab initio molecular dynamics ; H2O2 ; initial decomposition mechanisms</subject><ispartof>physica status solidi (b), 2024-02, Vol.261 (2), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2616-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Hong, Dan</creatorcontrib><creatorcontrib>Liu, Fu-Sheng</creatorcontrib><creatorcontrib>Liu, Zheng-Tang</creatorcontrib><creatorcontrib>Liu, Qi-Jun</creatorcontrib><title>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</title><title>physica status solidi (b)</title><description>In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2. The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.</description><subject>ab initio molecular dynamics</subject><subject>H2O2</subject><subject>initial decomposition mechanisms</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD1PwzAUAC0EEqGwMvsPpDw_13YyQoGmUlErtcyR4zy3Qc2H4iDUf08qUKfTLTccY48CpgIAn7oQiikCSgCp8YpFQqGIZarENYtAGohFavCW3YXwBQBGSBGxbNlUQ2WP_JVcW3dtGK1t-Ae5g22qUPPW8wzXyO3As2p_4DuqO-rt8N0Tt03JNz2FMMo9u_H2GOjhnxP2-f62m2fxar1Yzp9X8R4Tg7FADeh1ohSVlkr0iSOtlcF0BJDXSqazQhcwE-icE94o6RQ6r42TEklOWPrX_amOdMq7vqptf8oF5OcJ-XlCfpmQb7bbl4vJXxbEUnI</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zheng, Wei</creator><creator>Hong, Dan</creator><creator>Liu, Fu-Sheng</creator><creator>Liu, Zheng-Tang</creator><creator>Liu, Qi-Jun</creator><scope/><orcidid>https://orcid.org/0000-0002-2616-2927</orcidid></search><sort><creationdate>202402</creationdate><title>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</title><author>Zheng, Wei ; Hong, Dan ; Liu, Fu-Sheng ; Liu, Zheng-Tang ; Liu, Qi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2872-12602f6855edaed2f8ce665729e660ef65394b6b0412ccc1f753c52cf67c332e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ab initio molecular dynamics</topic><topic>H2O2</topic><topic>initial decomposition mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Hong, Dan</creatorcontrib><creatorcontrib>Liu, Fu-Sheng</creatorcontrib><creatorcontrib>Liu, Zheng-Tang</creatorcontrib><creatorcontrib>Liu, Qi-Jun</creatorcontrib><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wei</au><au>Hong, Dan</au><au>Liu, Fu-Sheng</au><au>Liu, Zheng-Tang</au><au>Liu, Qi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</atitle><jtitle>physica status solidi (b)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>261</volume><issue>2</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2. The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.</abstract><doi>10.1002/pssb.202300362</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2616-2927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2024-02, Vol.261 (2), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_wiley_primary_10_1002_pssb_202300362_PSSB202300362
source Wiley
subjects ab initio molecular dynamics
H2O2
initial decomposition mechanisms
title Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20Decomposition%20Mechanism%20of%20H2O2%20at%20High%20Temperature%20and%20Pressure&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Zheng,%20Wei&rft.date=2024-02&rft.volume=261&rft.issue=2&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202300362&rft_dat=%3Cwiley%3EPSSB202300362%3C/wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g2872-12602f6855edaed2f8ce665729e660ef65394b6b0412ccc1f753c52cf67c332e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true