Loading…
Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure
In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of inter...
Saved in:
Published in: | physica status solidi (b) 2024-02, Vol.261 (2), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | physica status solidi (b) |
container_volume | 261 |
creator | Zheng, Wei Hong, Dan Liu, Fu-Sheng Liu, Zheng-Tang Liu, Qi-Jun |
description | In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2.
The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation. |
doi_str_mv | 10.1002/pssb.202300362 |
format | article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_pssb_202300362_PSSB202300362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202300362</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2872-12602f6855edaed2f8ce665729e660ef65394b6b0412ccc1f753c52cf67c332e3</originalsourceid><addsrcrecordid>eNo9kD1PwzAUAC0EEqGwMvsPpDw_13YyQoGmUlErtcyR4zy3Qc2H4iDUf08qUKfTLTccY48CpgIAn7oQiikCSgCp8YpFQqGIZarENYtAGohFavCW3YXwBQBGSBGxbNlUQ2WP_JVcW3dtGK1t-Ae5g22qUPPW8wzXyO3As2p_4DuqO-rt8N0Tt03JNz2FMMo9u_H2GOjhnxP2-f62m2fxar1Yzp9X8R4Tg7FADeh1ohSVlkr0iSOtlcF0BJDXSqazQhcwE-icE94o6RQ6r42TEklOWPrX_amOdMq7vqptf8oF5OcJ-XlCfpmQb7bbl4vJXxbEUnI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</title><source>Wiley</source><creator>Zheng, Wei ; Hong, Dan ; Liu, Fu-Sheng ; Liu, Zheng-Tang ; Liu, Qi-Jun</creator><creatorcontrib>Zheng, Wei ; Hong, Dan ; Liu, Fu-Sheng ; Liu, Zheng-Tang ; Liu, Qi-Jun</creatorcontrib><description>In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2.
The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202300362</identifier><language>eng</language><subject>ab initio molecular dynamics ; H2O2 ; initial decomposition mechanisms</subject><ispartof>physica status solidi (b), 2024-02, Vol.261 (2), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2616-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Hong, Dan</creatorcontrib><creatorcontrib>Liu, Fu-Sheng</creatorcontrib><creatorcontrib>Liu, Zheng-Tang</creatorcontrib><creatorcontrib>Liu, Qi-Jun</creatorcontrib><title>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</title><title>physica status solidi (b)</title><description>In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2.
The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.</description><subject>ab initio molecular dynamics</subject><subject>H2O2</subject><subject>initial decomposition mechanisms</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD1PwzAUAC0EEqGwMvsPpDw_13YyQoGmUlErtcyR4zy3Qc2H4iDUf08qUKfTLTccY48CpgIAn7oQiikCSgCp8YpFQqGIZarENYtAGohFavCW3YXwBQBGSBGxbNlUQ2WP_JVcW3dtGK1t-Ae5g22qUPPW8wzXyO3As2p_4DuqO-rt8N0Tt03JNz2FMMo9u_H2GOjhnxP2-f62m2fxar1Yzp9X8R4Tg7FADeh1ohSVlkr0iSOtlcF0BJDXSqazQhcwE-icE94o6RQ6r42TEklOWPrX_amOdMq7vqptf8oF5OcJ-XlCfpmQb7bbl4vJXxbEUnI</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zheng, Wei</creator><creator>Hong, Dan</creator><creator>Liu, Fu-Sheng</creator><creator>Liu, Zheng-Tang</creator><creator>Liu, Qi-Jun</creator><scope/><orcidid>https://orcid.org/0000-0002-2616-2927</orcidid></search><sort><creationdate>202402</creationdate><title>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</title><author>Zheng, Wei ; Hong, Dan ; Liu, Fu-Sheng ; Liu, Zheng-Tang ; Liu, Qi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2872-12602f6855edaed2f8ce665729e660ef65394b6b0412ccc1f753c52cf67c332e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ab initio molecular dynamics</topic><topic>H2O2</topic><topic>initial decomposition mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Hong, Dan</creatorcontrib><creatorcontrib>Liu, Fu-Sheng</creatorcontrib><creatorcontrib>Liu, Zheng-Tang</creatorcontrib><creatorcontrib>Liu, Qi-Jun</creatorcontrib><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wei</au><au>Hong, Dan</au><au>Liu, Fu-Sheng</au><au>Liu, Zheng-Tang</au><au>Liu, Qi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure</atitle><jtitle>physica status solidi (b)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>261</volume><issue>2</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>In recent years, H2O2 as an excellent rocket propellant has been widely studied. Herein, the initial decomposition mechanism of H2O2 is studied in detail by molecular dynamics simulation based on density functional theory. It is found that when the energy input to H2O2 is low, the mechanism of intermolecular hydrogen transfer is dominant. With the increase of input energy, the breaking of O–O becomes the first step of the initial reaction, H–O fracture becomes the second step, and finally the transfer of hydrogen to produce H2O and HO2.
The initial reaction mechanism of H2O2 is different with different stimulus intensities, which is reflected by molecular dynamics simulation.</abstract><doi>10.1002/pssb.202300362</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2616-2927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | physica status solidi (b), 2024-02, Vol.261 (2), p.n/a |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_wiley_primary_10_1002_pssb_202300362_PSSB202300362 |
source | Wiley |
subjects | ab initio molecular dynamics H2O2 initial decomposition mechanisms |
title | Initial Decomposition Mechanism of H2O2 at High Temperature and Pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20Decomposition%20Mechanism%20of%20H2O2%20at%20High%20Temperature%20and%20Pressure&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Zheng,%20Wei&rft.date=2024-02&rft.volume=261&rft.issue=2&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202300362&rft_dat=%3Cwiley%3EPSSB202300362%3C/wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g2872-12602f6855edaed2f8ce665729e660ef65394b6b0412ccc1f753c52cf67c332e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |