Loading…

Immiscible CO2-H2O fluids in the shallow crust

The significance of a single CO2‐H2O fluid phase is well known for metamorphic systems, and CO2‐H2O immiscibility is explicit in fluid inclusion literature, especially regarding hydrothermal ores. Complex multiphase CO2‐H2O behavior exists over wide temperature and pressure ranges overlapping other...

Full description

Saved in:
Bibliographic Details
Published in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2006-10, Vol.7 (10), p.n/a
Main Authors: Kaszuba, John P., Williams, Laurie L., Janecky, David R., Hollis, W. Kirk, Tsimpanogiannis, Ioannis N.
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 10
container_start_page
container_title Geochemistry, geophysics, geosystems : G3
container_volume 7
creator Kaszuba, John P.
Williams, Laurie L.
Janecky, David R.
Hollis, W. Kirk
Tsimpanogiannis, Ioannis N.
description The significance of a single CO2‐H2O fluid phase is well known for metamorphic systems, and CO2‐H2O immiscibility is explicit in fluid inclusion literature, especially regarding hydrothermal ores. Complex multiphase CO2‐H2O behavior exists over wide temperature and pressure ranges overlapping other important geochemical processes. The character and physical‐chemical properties of multiple phases possible for CO2 and H2O, and the potential impact of these coexisting phases on geochemical processes in the crust, are not broadly appreciated. We propose that immiscible supercritical CO2 fluid and a liquid rich in H2O coexist in the shallow crust, to 400°C and 300 MPa, and that interactions among the two fluids and host rock are significant processes that produce recognizable geochemical and textural evidence. Supercritical CO2 fluids bring potential complexity to fluid‐rock systems by influencing aqueous reactions via carbonic acid equilibria, penetrating complex geometries inaccessible to aqueous fluid, and dissolving and redistributing metals as organometallic compounds. The distal margin of a contact metamorphic aureole is one example we discuss in which interaction between two disparate CO2‐H2O fluids controls H2O activity and the progress and distribution of metamorphic hydration reactions. In another example, supercritical CO2 produces acidity, carbonate saturation, and silica supersaturation in brine. Separation and emplacement of this brine into a rock‐dominated system buffered to neutral pH enhances precipitation of carbonates and quartz, chalcedony, or amorphous silica in veins. Other possible examples of CO2‐H2O fluid immiscibility coupled with multiphase fluid‐rock interactions are clay desiccation, diagenetic and postdiagenetic silicate reactions, origin and distribution of carbonate cements in sedimentary basin sandstones, fluid‐mass transfer, and anthropogenic CO2 sequestration.
doi_str_mv 10.1029/2005GC001107
format article
fullrecord <record><control><sourceid>istex_24P</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2005GC001107_GGGE803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_TKZ7HQ5K_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3393-8638fb54f4414466c5656e495642424c2ea7aa52a9e126490bbdd4ed967c75513</originalsourceid><addsrcrecordid>eNpNj91KwzAcxYMoOKd3PkBeIDNf_6S9lDLTsWERJoI3IW1TFs1Umo65t7cykXEuzrk4vwMHoVtGZ4zy_I5TCqaglDGqz9CEAQfCKdfnJ_kSXaX0NnYkQDZBs8V2G1IT6uhxUXFS8gp3cRfahMMHHjYep42L8XOPm36Xhmt00bmY_M2fT9Hzw3xdlGRVmUVxvyJBiFyQTImsq0F2UjIplWpAgfIyByX5qIZ7p50D7nLPuJI5reu2lb7NlW40ABNTxI67-xD9wX71Yev6g2XU_h61p0etMWaeUTEy5MiENPjvf8b171ZpocG-PBq7Xr7q8gmW1ogfqHVTNQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Immiscible CO2-H2O fluids in the shallow crust</title><source>Wiley Online Library Open Access</source><creator>Kaszuba, John P. ; Williams, Laurie L. ; Janecky, David R. ; Hollis, W. Kirk ; Tsimpanogiannis, Ioannis N.</creator><creatorcontrib>Kaszuba, John P. ; Williams, Laurie L. ; Janecky, David R. ; Hollis, W. Kirk ; Tsimpanogiannis, Ioannis N.</creatorcontrib><description>The significance of a single CO2‐H2O fluid phase is well known for metamorphic systems, and CO2‐H2O immiscibility is explicit in fluid inclusion literature, especially regarding hydrothermal ores. Complex multiphase CO2‐H2O behavior exists over wide temperature and pressure ranges overlapping other important geochemical processes. The character and physical‐chemical properties of multiple phases possible for CO2 and H2O, and the potential impact of these coexisting phases on geochemical processes in the crust, are not broadly appreciated. We propose that immiscible supercritical CO2 fluid and a liquid rich in H2O coexist in the shallow crust, to 400°C and 300 MPa, and that interactions among the two fluids and host rock are significant processes that produce recognizable geochemical and textural evidence. Supercritical CO2 fluids bring potential complexity to fluid‐rock systems by influencing aqueous reactions via carbonic acid equilibria, penetrating complex geometries inaccessible to aqueous fluid, and dissolving and redistributing metals as organometallic compounds. The distal margin of a contact metamorphic aureole is one example we discuss in which interaction between two disparate CO2‐H2O fluids controls H2O activity and the progress and distribution of metamorphic hydration reactions. In another example, supercritical CO2 produces acidity, carbonate saturation, and silica supersaturation in brine. Separation and emplacement of this brine into a rock‐dominated system buffered to neutral pH enhances precipitation of carbonates and quartz, chalcedony, or amorphous silica in veins. Other possible examples of CO2‐H2O fluid immiscibility coupled with multiphase fluid‐rock interactions are clay desiccation, diagenetic and postdiagenetic silicate reactions, origin and distribution of carbonate cements in sedimentary basin sandstones, fluid‐mass transfer, and anthropogenic CO2 sequestration.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2005GC001107</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>water-rock interaction</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2006-10, Vol.7 (10), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005GC001107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005GC001107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2005GC001107$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Kaszuba, John P.</creatorcontrib><creatorcontrib>Williams, Laurie L.</creatorcontrib><creatorcontrib>Janecky, David R.</creatorcontrib><creatorcontrib>Hollis, W. Kirk</creatorcontrib><creatorcontrib>Tsimpanogiannis, Ioannis N.</creatorcontrib><title>Immiscible CO2-H2O fluids in the shallow crust</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>The significance of a single CO2‐H2O fluid phase is well known for metamorphic systems, and CO2‐H2O immiscibility is explicit in fluid inclusion literature, especially regarding hydrothermal ores. Complex multiphase CO2‐H2O behavior exists over wide temperature and pressure ranges overlapping other important geochemical processes. The character and physical‐chemical properties of multiple phases possible for CO2 and H2O, and the potential impact of these coexisting phases on geochemical processes in the crust, are not broadly appreciated. We propose that immiscible supercritical CO2 fluid and a liquid rich in H2O coexist in the shallow crust, to 400°C and 300 MPa, and that interactions among the two fluids and host rock are significant processes that produce recognizable geochemical and textural evidence. Supercritical CO2 fluids bring potential complexity to fluid‐rock systems by influencing aqueous reactions via carbonic acid equilibria, penetrating complex geometries inaccessible to aqueous fluid, and dissolving and redistributing metals as organometallic compounds. The distal margin of a contact metamorphic aureole is one example we discuss in which interaction between two disparate CO2‐H2O fluids controls H2O activity and the progress and distribution of metamorphic hydration reactions. In another example, supercritical CO2 produces acidity, carbonate saturation, and silica supersaturation in brine. Separation and emplacement of this brine into a rock‐dominated system buffered to neutral pH enhances precipitation of carbonates and quartz, chalcedony, or amorphous silica in veins. Other possible examples of CO2‐H2O fluid immiscibility coupled with multiphase fluid‐rock interactions are clay desiccation, diagenetic and postdiagenetic silicate reactions, origin and distribution of carbonate cements in sedimentary basin sandstones, fluid‐mass transfer, and anthropogenic CO2 sequestration.</description><subject>water-rock interaction</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNj91KwzAcxYMoOKd3PkBeIDNf_6S9lDLTsWERJoI3IW1TFs1Umo65t7cykXEuzrk4vwMHoVtGZ4zy_I5TCqaglDGqz9CEAQfCKdfnJ_kSXaX0NnYkQDZBs8V2G1IT6uhxUXFS8gp3cRfahMMHHjYep42L8XOPm36Xhmt00bmY_M2fT9Hzw3xdlGRVmUVxvyJBiFyQTImsq0F2UjIplWpAgfIyByX5qIZ7p50D7nLPuJI5reu2lb7NlW40ABNTxI67-xD9wX71Yev6g2XU_h61p0etMWaeUTEy5MiENPjvf8b171ZpocG-PBq7Xr7q8gmW1ogfqHVTNQ</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Kaszuba, John P.</creator><creator>Williams, Laurie L.</creator><creator>Janecky, David R.</creator><creator>Hollis, W. Kirk</creator><creator>Tsimpanogiannis, Ioannis N.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>200610</creationdate><title>Immiscible CO2-H2O fluids in the shallow crust</title><author>Kaszuba, John P. ; Williams, Laurie L. ; Janecky, David R. ; Hollis, W. Kirk ; Tsimpanogiannis, Ioannis N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3393-8638fb54f4414466c5656e495642424c2ea7aa52a9e126490bbdd4ed967c75513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>water-rock interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaszuba, John P.</creatorcontrib><creatorcontrib>Williams, Laurie L.</creatorcontrib><creatorcontrib>Janecky, David R.</creatorcontrib><creatorcontrib>Hollis, W. Kirk</creatorcontrib><creatorcontrib>Tsimpanogiannis, Ioannis N.</creatorcontrib><collection>Istex</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaszuba, John P.</au><au>Williams, Laurie L.</au><au>Janecky, David R.</au><au>Hollis, W. Kirk</au><au>Tsimpanogiannis, Ioannis N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immiscible CO2-H2O fluids in the shallow crust</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2006-10</date><risdate>2006</risdate><volume>7</volume><issue>10</issue><epage>n/a</epage><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>The significance of a single CO2‐H2O fluid phase is well known for metamorphic systems, and CO2‐H2O immiscibility is explicit in fluid inclusion literature, especially regarding hydrothermal ores. Complex multiphase CO2‐H2O behavior exists over wide temperature and pressure ranges overlapping other important geochemical processes. The character and physical‐chemical properties of multiple phases possible for CO2 and H2O, and the potential impact of these coexisting phases on geochemical processes in the crust, are not broadly appreciated. We propose that immiscible supercritical CO2 fluid and a liquid rich in H2O coexist in the shallow crust, to 400°C and 300 MPa, and that interactions among the two fluids and host rock are significant processes that produce recognizable geochemical and textural evidence. Supercritical CO2 fluids bring potential complexity to fluid‐rock systems by influencing aqueous reactions via carbonic acid equilibria, penetrating complex geometries inaccessible to aqueous fluid, and dissolving and redistributing metals as organometallic compounds. The distal margin of a contact metamorphic aureole is one example we discuss in which interaction between two disparate CO2‐H2O fluids controls H2O activity and the progress and distribution of metamorphic hydration reactions. In another example, supercritical CO2 produces acidity, carbonate saturation, and silica supersaturation in brine. Separation and emplacement of this brine into a rock‐dominated system buffered to neutral pH enhances precipitation of carbonates and quartz, chalcedony, or amorphous silica in veins. Other possible examples of CO2‐H2O fluid immiscibility coupled with multiphase fluid‐rock interactions are clay desiccation, diagenetic and postdiagenetic silicate reactions, origin and distribution of carbonate cements in sedimentary basin sandstones, fluid‐mass transfer, and anthropogenic CO2 sequestration.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005GC001107</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2006-10, Vol.7 (10), p.n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_wiley_primary_10_1029_2005GC001107_GGGE803
source Wiley Online Library Open Access
subjects water-rock interaction
title Immiscible CO2-H2O fluids in the shallow crust
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immiscible%20CO2-H2O%20fluids%20in%20the%20shallow%20crust&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Kaszuba,%20John%20P.&rft.date=2006-10&rft.volume=7&rft.issue=10&rft.epage=n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2005GC001107&rft_dat=%3Cistex_24P%3Eark_67375_WNG_TKZ7HQ5K_G%3C/istex_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i3393-8638fb54f4414466c5656e495642424c2ea7aa52a9e126490bbdd4ed967c75513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true