Loading…
SAR multi-target interactive motion recognition based on convolutional neural networks
Synthetic aperture radar (SAR) multi-target interactive motion recognition classifies the type of interactive motion and generates descriptions of the interactive motions at the semantic level by considering the relevance of multi-target motions. A method for SAR multi-target interactive motion reco...
Saved in:
Published in: | IET image processing 2020-09, Vol.14 (11), p.2567-2578 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synthetic aperture radar (SAR) multi-target interactive motion recognition classifies the type of interactive motion and generates descriptions of the interactive motions at the semantic level by considering the relevance of multi-target motions. A method for SAR multi-target interactive motion recognition is proposed, which includes moving target detection, target type recognition, interactive motion feature extraction, and multi-target interactive motion type recognition. Wavelet thresholding denoising combined with a convolutional neural network (CNN) is proposed for target type recognition. The method performs wavelet thresholding denoising on SAR target images and then uses an eight-layer CNN named EilNet to achieve target recognition. After target type recognition, a multi-target interactive motion type recognition method is proposed. A motion feature matrix is constructed for recognition and a four-layer CNN named FolNet is designed to perform interactive motion type recognition. A motion simulation dataset based on the MSTAR dataset is built, which includes four kinds of interactive motions by two moving targets. The experimental results show that the recognition performance of the authors’ Wavelet + EilNet method for target type recognition and FolNet for multi-target interactive motion type recognition are both better than other methods. Thus, the proposed method is an effective method for SAR multi-target interactive motion recognition. |
---|---|
ISSN: | 1751-9659 1751-9667 |
DOI: | 10.1049/iet-ipr.2019.0861 |