Loading…

Application of Doppler beam sharpening for azimuth refinement in prospective low-THz automotive radars

In this study, the authors investigate the application of the Doppler beam sharpening (DBS) technique for angular refinement to the emerging area of low-terahertz (THz) radar sensing. Ultimately this is to improve radar image quality in the azimuth plane to complement the excellent range resolution...

Full description

Saved in:
Bibliographic Details
Published in:IET radar, sonar & navigation sonar & navigation, 2018-10, Vol.12 (10), p.1121-1130
Main Authors: Daniel, Liam, Stove, Andrew, Hoare, Edward, Phippen, Dominic, Cherniakov, Mike, Mulgrew, Bernie, Gashinova, Marina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the authors investigate the application of the Doppler beam sharpening (DBS) technique for angular refinement to the emerging area of low-terahertz (THz) radar sensing. Ultimately this is to improve radar image quality in the azimuth plane to complement the excellent range resolution and thus improve object classification in low-THz radar imaging systems for autonomous platforms. The study explains the fundamental theory behind the process of DBS and describes the applicability of DBS to automotive sensing, indicating the potential for synthetic beamwidths of a fraction of a degree. Low-THz DBS was experimentally tested under controlled laboratory conditions, not only to accurately localised target objects in Cartesian space but also to provide unique object imaging at low-THz frequencies with wide azimuthal beamwidth antennas. It was shown that a stationary (i.e. non-scanned) wide beam antenna mounted on a moving platform can deliver imagery at least comparable to that produced by physical beamforming, be that steering arrays or narrow beam scanning antennas as in the experimental case presented.
ISSN:1751-8784
1751-8792
1751-8792
DOI:10.1049/iet-rsn.2018.5024