Loading…

Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method

This work analyses the nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes (SWCNTs) based on numerical methods. Two-second order partial differential equations that govern the nonlinear coupled axial–torsional vibration for such nanotube are derived. First, these equations...

Full description

Saved in:
Bibliographic Details
Published in:Micro & nano letters 2019-12, Vol.14 (14), p.1366-1371
Main Authors: Fatahi-Vajari, Alireza, Azimzadeh, Zahra, Hussain, Muzamal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3
cites cdi_FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3
container_end_page 1371
container_issue 14
container_start_page 1366
container_title Micro & nano letters
container_volume 14
creator Fatahi-Vajari, Alireza
Azimzadeh, Zahra
Hussain, Muzamal
description This work analyses the nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes (SWCNTs) based on numerical methods. Two-second order partial differential equations that govern the nonlinear coupled axial–torsional vibration for such nanotube are derived. First, these equations are reduced to ordinary differential equations using the Galerkin method and then solved using homotopy perturbation method (HPM) to obtain the nonlinear natural frequencies in coupled axial–torsional vibration mode. It is found that the obtained frequencies are complicated due to coupling between two vibration modes. The dependence of boundary conditions, vibration modes and nanotubes geometry on the nonlinear coupled axial–torsional vibration characteristics of SWCNTs are studied in detail. It was shown that boundary conditions and maximum initial vibration velocity have significant effects on the nonlinear coupled axial–torsional vibration response of SWCNTs. It was also seen that unlike the linear model if the maximum vibration velocity increases, the natural frequencies of vibration increases too. To show the effectiveness and ability of this method, the results obtained with HPM are compared with the fourth-order Runge-Kutta numerical results and good agreement is observed. To the knowledge of authors, the results given herein are new and can be used as a foundation work for future work.
doi_str_mv 10.1049/mnl.2019.0203
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_wiley_primary_10_1049_mnl_2019_0203_MNA2BF01698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319715554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhSMEEqUwsltiYkixkzixx1JRQCplgdlynBvqyo2DnVC68Q68IU9CQhg6ICYf-X7n_pwgOCd4QnDCrzaVmUSY8AmOcHwQjEhGcYiTJD7c08fBifdrjJMsyvgocEtbGV2BdEjZtjZQIPmupfn6-Gys89pW0qA3nTvZdBrZEnldvRgIt9L0sJIu7_4rWdmmzcGjtq-jld3YxtY7VINrWpcP7g00K1ucBkelNB7Oft9x8Dy_eZrdhYvH2_vZdBGqOElZCGmcZlDklDOggBlnuCwIY6qQrIzSSKW8pLTMOI9ZpwuWKvVDJgkrqYJ4HFwMfWtnX1vwjVjb1nX3eBHFhGeEUpp0VDhQylnvHZSidnoj3U4QLPpYRRer6GMVfawdnw78VhvY_Q-Lh-U0up5jknLWGS8Ho4a9Tf4e8g1Jqoxr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319715554</pqid></control><display><type>article</type><title>Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Fatahi-Vajari, Alireza ; Azimzadeh, Zahra ; Hussain, Muzamal</creator><creatorcontrib>Fatahi-Vajari, Alireza ; Azimzadeh, Zahra ; Hussain, Muzamal</creatorcontrib><description>This work analyses the nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes (SWCNTs) based on numerical methods. Two-second order partial differential equations that govern the nonlinear coupled axial–torsional vibration for such nanotube are derived. First, these equations are reduced to ordinary differential equations using the Galerkin method and then solved using homotopy perturbation method (HPM) to obtain the nonlinear natural frequencies in coupled axial–torsional vibration mode. It is found that the obtained frequencies are complicated due to coupling between two vibration modes. The dependence of boundary conditions, vibration modes and nanotubes geometry on the nonlinear coupled axial–torsional vibration characteristics of SWCNTs are studied in detail. It was shown that boundary conditions and maximum initial vibration velocity have significant effects on the nonlinear coupled axial–torsional vibration response of SWCNTs. It was also seen that unlike the linear model if the maximum vibration velocity increases, the natural frequencies of vibration increases too. To show the effectiveness and ability of this method, the results obtained with HPM are compared with the fourth-order Runge-Kutta numerical results and good agreement is observed. To the knowledge of authors, the results given herein are new and can be used as a foundation work for future work.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2019.0203</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>axial–torsional vibration characteristics ; axial–torsional vibration response ; Boundary conditions ; carbon nanotubes ; coupled axial–torsional vibration mode ; Coupled modes ; Dependence ; differential equations ; Galerkin method ; homotopy perturbation method ; maximum initial vibration velocity ; Nonlinear analysis ; nonlinear coupled axial–torsional vibration ; nonlinear differential equations ; Nonlinear equations ; Numerical methods ; Ordinary differential equations ; Partial differential equations ; Perturbation methods ; Resonant frequencies ; Runge-Kutta method ; Runge‐Kutta methods ; Single wall carbon nanotubes ; single‐walled carbon nanotubes ; Torsion ; Torsional vibration ; Vibration mode ; vibration modes ; vibrational modes ; vibrations ; Viscosity</subject><ispartof>Micro &amp; nano letters, 2019-12, Vol.14 (14), p.1366-1371</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology Dec 18, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3</citedby><cites>FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3</cites><orcidid>0000-0001-7735-9896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2019.0203$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2019.0203$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11560,27922,27923,46050,46474</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2019.0203$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Fatahi-Vajari, Alireza</creatorcontrib><creatorcontrib>Azimzadeh, Zahra</creatorcontrib><creatorcontrib>Hussain, Muzamal</creatorcontrib><title>Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method</title><title>Micro &amp; nano letters</title><description>This work analyses the nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes (SWCNTs) based on numerical methods. Two-second order partial differential equations that govern the nonlinear coupled axial–torsional vibration for such nanotube are derived. First, these equations are reduced to ordinary differential equations using the Galerkin method and then solved using homotopy perturbation method (HPM) to obtain the nonlinear natural frequencies in coupled axial–torsional vibration mode. It is found that the obtained frequencies are complicated due to coupling between two vibration modes. The dependence of boundary conditions, vibration modes and nanotubes geometry on the nonlinear coupled axial–torsional vibration characteristics of SWCNTs are studied in detail. It was shown that boundary conditions and maximum initial vibration velocity have significant effects on the nonlinear coupled axial–torsional vibration response of SWCNTs. It was also seen that unlike the linear model if the maximum vibration velocity increases, the natural frequencies of vibration increases too. To show the effectiveness and ability of this method, the results obtained with HPM are compared with the fourth-order Runge-Kutta numerical results and good agreement is observed. To the knowledge of authors, the results given herein are new and can be used as a foundation work for future work.</description><subject>axial–torsional vibration characteristics</subject><subject>axial–torsional vibration response</subject><subject>Boundary conditions</subject><subject>carbon nanotubes</subject><subject>coupled axial–torsional vibration mode</subject><subject>Coupled modes</subject><subject>Dependence</subject><subject>differential equations</subject><subject>Galerkin method</subject><subject>homotopy perturbation method</subject><subject>maximum initial vibration velocity</subject><subject>Nonlinear analysis</subject><subject>nonlinear coupled axial–torsional vibration</subject><subject>nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Numerical methods</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Perturbation methods</subject><subject>Resonant frequencies</subject><subject>Runge-Kutta method</subject><subject>Runge‐Kutta methods</subject><subject>Single wall carbon nanotubes</subject><subject>single‐walled carbon nanotubes</subject><subject>Torsion</subject><subject>Torsional vibration</subject><subject>Vibration mode</subject><subject>vibration modes</subject><subject>vibrational modes</subject><subject>vibrations</subject><subject>Viscosity</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhSMEEqUwsltiYkixkzixx1JRQCplgdlynBvqyo2DnVC68Q68IU9CQhg6ICYf-X7n_pwgOCd4QnDCrzaVmUSY8AmOcHwQjEhGcYiTJD7c08fBifdrjJMsyvgocEtbGV2BdEjZtjZQIPmupfn6-Gys89pW0qA3nTvZdBrZEnldvRgIt9L0sJIu7_4rWdmmzcGjtq-jld3YxtY7VINrWpcP7g00K1ucBkelNB7Oft9x8Dy_eZrdhYvH2_vZdBGqOElZCGmcZlDklDOggBlnuCwIY6qQrIzSSKW8pLTMOI9ZpwuWKvVDJgkrqYJ4HFwMfWtnX1vwjVjb1nX3eBHFhGeEUpp0VDhQylnvHZSidnoj3U4QLPpYRRer6GMVfawdnw78VhvY_Q-Lh-U0up5jknLWGS8Ho4a9Tf4e8g1Jqoxr</recordid><startdate>20191218</startdate><enddate>20191218</enddate><creator>Fatahi-Vajari, Alireza</creator><creator>Azimzadeh, Zahra</creator><creator>Hussain, Muzamal</creator><general>The Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7735-9896</orcidid></search><sort><creationdate>20191218</creationdate><title>Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method</title><author>Fatahi-Vajari, Alireza ; Azimzadeh, Zahra ; Hussain, Muzamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>axial–torsional vibration characteristics</topic><topic>axial–torsional vibration response</topic><topic>Boundary conditions</topic><topic>carbon nanotubes</topic><topic>coupled axial–torsional vibration mode</topic><topic>Coupled modes</topic><topic>Dependence</topic><topic>differential equations</topic><topic>Galerkin method</topic><topic>homotopy perturbation method</topic><topic>maximum initial vibration velocity</topic><topic>Nonlinear analysis</topic><topic>nonlinear coupled axial–torsional vibration</topic><topic>nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Numerical methods</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Perturbation methods</topic><topic>Resonant frequencies</topic><topic>Runge-Kutta method</topic><topic>Runge‐Kutta methods</topic><topic>Single wall carbon nanotubes</topic><topic>single‐walled carbon nanotubes</topic><topic>Torsion</topic><topic>Torsional vibration</topic><topic>Vibration mode</topic><topic>vibration modes</topic><topic>vibrational modes</topic><topic>vibrations</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatahi-Vajari, Alireza</creatorcontrib><creatorcontrib>Azimzadeh, Zahra</creatorcontrib><creatorcontrib>Hussain, Muzamal</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Micro &amp; nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fatahi-Vajari, Alireza</au><au>Azimzadeh, Zahra</au><au>Hussain, Muzamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method</atitle><jtitle>Micro &amp; nano letters</jtitle><date>2019-12-18</date><risdate>2019</risdate><volume>14</volume><issue>14</issue><spage>1366</spage><epage>1371</epage><pages>1366-1371</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>This work analyses the nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes (SWCNTs) based on numerical methods. Two-second order partial differential equations that govern the nonlinear coupled axial–torsional vibration for such nanotube are derived. First, these equations are reduced to ordinary differential equations using the Galerkin method and then solved using homotopy perturbation method (HPM) to obtain the nonlinear natural frequencies in coupled axial–torsional vibration mode. It is found that the obtained frequencies are complicated due to coupling between two vibration modes. The dependence of boundary conditions, vibration modes and nanotubes geometry on the nonlinear coupled axial–torsional vibration characteristics of SWCNTs are studied in detail. It was shown that boundary conditions and maximum initial vibration velocity have significant effects on the nonlinear coupled axial–torsional vibration response of SWCNTs. It was also seen that unlike the linear model if the maximum vibration velocity increases, the natural frequencies of vibration increases too. To show the effectiveness and ability of this method, the results obtained with HPM are compared with the fourth-order Runge-Kutta numerical results and good agreement is observed. To the knowledge of authors, the results given herein are new and can be used as a foundation work for future work.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2019.0203</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7735-9896</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1750-0443
ispartof Micro & nano letters, 2019-12, Vol.14 (14), p.1366-1371
issn 1750-0443
1750-0443
language eng
recordid cdi_wiley_primary_10_1049_mnl_2019_0203_MNA2BF01698
source Open Access: Wiley-Blackwell Open Access Journals
subjects axial–torsional vibration characteristics
axial–torsional vibration response
Boundary conditions
carbon nanotubes
coupled axial–torsional vibration mode
Coupled modes
Dependence
differential equations
Galerkin method
homotopy perturbation method
maximum initial vibration velocity
Nonlinear analysis
nonlinear coupled axial–torsional vibration
nonlinear differential equations
Nonlinear equations
Numerical methods
Ordinary differential equations
Partial differential equations
Perturbation methods
Resonant frequencies
Runge-Kutta method
Runge‐Kutta methods
Single wall carbon nanotubes
single‐walled carbon nanotubes
Torsion
Torsional vibration
Vibration mode
vibration modes
vibrational modes
vibrations
Viscosity
title Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20coupled%20axial%E2%80%93torsional%20vibration%20of%20single-walled%20carbon%20nanotubes%20using%20homotopy%20perturbation%20method&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Fatahi-Vajari,%20Alireza&rft.date=2019-12-18&rft.volume=14&rft.issue=14&rft.spage=1366&rft.epage=1371&rft.pages=1366-1371&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2019.0203&rft_dat=%3Cproquest_24P%3E2319715554%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3468-e6367edb598e5e08980fd188cda8f262c69f55f79938c69d86cc8e5e0448f5ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2319715554&rft_id=info:pmid/&rfr_iscdi=true