Loading…

15N nuclear magnetic resonance relaxation studies on rat β‐parvalbumin and the pentacarboxylate variants, S55D and G98D

15N relaxation data for Ca2+‐bound rat β‐parvalbumin (a.k.a. oncomodulin) were analyzed using the Lipari‐Szabo formalism and compared with existing data for rat α‐parvalbumin. Although the average S2 values for the two proteins are very similar (0.85 for α, 0.84 for β), residue‐by‐residue inspection...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2002-01, Vol.11 (1), p.158-173
Main Authors: Henzl, Michael T., Wycoff, Wei G., Larson, John D., Likos, John J.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 173
container_issue 1
container_start_page 158
container_title Protein science
container_volume 11
creator Henzl, Michael T.
Wycoff, Wei G.
Larson, John D.
Likos, John J.
description 15N relaxation data for Ca2+‐bound rat β‐parvalbumin (a.k.a. oncomodulin) were analyzed using the Lipari‐Szabo formalism and compared with existing data for rat α‐parvalbumin. Although the average S2 values for the two proteins are very similar (0.85 for α, 0.84 for β), residue‐by‐residue inspection reveals systematic differences. α tends to have the lower S2 value in helical regions; β tends to have the lower value in the loop regions. Rat β was also examined in the Ca2+‐free state. The 59 assigned residues displayed an average order parameter (0.90) significantly greater than the corresponding residues in the Ca2+‐loaded form. The pentacarboxylate variants of rat β—S55D and G98D—also were examined in the Ca2+‐bound state. Although both mutations significantly heighten Ca2+ affinity, they utilize distinct energetic strategies. S55D improves the Ca2+‐binding enthalpy; G98D improves the binding entropy. They also show disparate peptide backbone dynamics. Whereas β G98D displays an average order parameter (0.87) slightly greater than that of the wild‐type protein, β S55D displays an average order parameter (0.82) slightly lower than wild‐type β. Furthermore, whereas just two backbone N‐H bonds in β G98D show internal motion on the 20–200‐psec timescale, fully 52 of the 93 residues analyzed in β S55D show this behavior. These findings suggest that the increased electrostatic repulsion attendant to introduction of an additional carboxylate into the CD site ligand array impedes backbone vibrational motion throughout the molecule.
doi_str_mv 10.1110/ps.18102
format article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1110_ps_18102_PRO110158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PRO110158</sourcerecordid><originalsourceid>FETCH-LOGICAL-u748-bfcafa7e29bedd4741ec07f5d79eb9c72ec4cc673595eade2a5077eff2907baa3</originalsourceid><addsrcrecordid>eNotkE1OwzAUhC0EEqUgcQQfgLR2EsfxErVQkCqKoAt20YvzAkapG9lOf1hxBM7CQTgEJ6EUVvONNJrFR8g5ZwPOORu2fsBzzuID0uNppqJcZU-HpMdUxqM8yfJjcuL9K2Ms5XHSI29c3FHb6QbB0QU8WwxGU4d-acFq3FEDGwhmaakPXWXQ0x06CPTr8_v9owW3gqbsFsZSsBUNL0hbtAE0uHK52TYQkK7AGbDBX9BHIcb73UTl41NyVEPj8ew_-2R-fTUf3UTT2eR2dDmNOpnmUVlrqEFirEqsqlSmHDWTtaikwlJpGaNOtc5kIpRAqDAGwaTEuo4VkyVA0ifDv9u1aXBbtM4swG0LzopfX0Xri72v4v5htutc5MkPakNkUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>15N nuclear magnetic resonance relaxation studies on rat β‐parvalbumin and the pentacarboxylate variants, S55D and G98D</title><source>Wiley</source><source>PubMed Central</source><creator>Henzl, Michael T. ; Wycoff, Wei G. ; Larson, John D. ; Likos, John J.</creator><creatorcontrib>Henzl, Michael T. ; Wycoff, Wei G. ; Larson, John D. ; Likos, John J.</creatorcontrib><description>15N relaxation data for Ca2+‐bound rat β‐parvalbumin (a.k.a. oncomodulin) were analyzed using the Lipari‐Szabo formalism and compared with existing data for rat α‐parvalbumin. Although the average S2 values for the two proteins are very similar (0.85 for α, 0.84 for β), residue‐by‐residue inspection reveals systematic differences. α tends to have the lower S2 value in helical regions; β tends to have the lower value in the loop regions. Rat β was also examined in the Ca2+‐free state. The 59 assigned residues displayed an average order parameter (0.90) significantly greater than the corresponding residues in the Ca2+‐loaded form. The pentacarboxylate variants of rat β—S55D and G98D—also were examined in the Ca2+‐bound state. Although both mutations significantly heighten Ca2+ affinity, they utilize distinct energetic strategies. S55D improves the Ca2+‐binding enthalpy; G98D improves the binding entropy. They also show disparate peptide backbone dynamics. Whereas β G98D displays an average order parameter (0.87) slightly greater than that of the wild‐type protein, β S55D displays an average order parameter (0.82) slightly lower than wild‐type β. Furthermore, whereas just two backbone N‐H bonds in β G98D show internal motion on the 20–200‐psec timescale, fully 52 of the 93 residues analyzed in β S55D show this behavior. These findings suggest that the increased electrostatic repulsion attendant to introduction of an additional carboxylate into the CD site ligand array impedes backbone vibrational motion throughout the molecule.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.18102</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Calcium‐binding proteins ; CD site, parvalbumin Ca2+‐binding site spanning residues 41–70 and including the C and D helices ; dynamics ; EF site, parvalbumin Ca2+‐binding site spanning residues 80–108 and including the E and F helices ; EF‐hand proteins ; Hepes, 4–(2‐hydroxyethyl)‐1‐piperazinesulfonic acid ; HSQC, heteronuclear single quantum coherence ; NMR ; NMR, nuclear magnetic resonance ; NOESY, nuclear Overhauser effect spectroscopy ; parvalbumins ; PV, parvalbumin ; TOCSY, total correlated spectroscopy</subject><ispartof>Protein science, 2002-01, Vol.11 (1), p.158-173</ispartof><rights>Copyright © 2002 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Henzl, Michael T.</creatorcontrib><creatorcontrib>Wycoff, Wei G.</creatorcontrib><creatorcontrib>Larson, John D.</creatorcontrib><creatorcontrib>Likos, John J.</creatorcontrib><title>15N nuclear magnetic resonance relaxation studies on rat β‐parvalbumin and the pentacarboxylate variants, S55D and G98D</title><title>Protein science</title><description>15N relaxation data for Ca2+‐bound rat β‐parvalbumin (a.k.a. oncomodulin) were analyzed using the Lipari‐Szabo formalism and compared with existing data for rat α‐parvalbumin. Although the average S2 values for the two proteins are very similar (0.85 for α, 0.84 for β), residue‐by‐residue inspection reveals systematic differences. α tends to have the lower S2 value in helical regions; β tends to have the lower value in the loop regions. Rat β was also examined in the Ca2+‐free state. The 59 assigned residues displayed an average order parameter (0.90) significantly greater than the corresponding residues in the Ca2+‐loaded form. The pentacarboxylate variants of rat β—S55D and G98D—also were examined in the Ca2+‐bound state. Although both mutations significantly heighten Ca2+ affinity, they utilize distinct energetic strategies. S55D improves the Ca2+‐binding enthalpy; G98D improves the binding entropy. They also show disparate peptide backbone dynamics. Whereas β G98D displays an average order parameter (0.87) slightly greater than that of the wild‐type protein, β S55D displays an average order parameter (0.82) slightly lower than wild‐type β. Furthermore, whereas just two backbone N‐H bonds in β G98D show internal motion on the 20–200‐psec timescale, fully 52 of the 93 residues analyzed in β S55D show this behavior. These findings suggest that the increased electrostatic repulsion attendant to introduction of an additional carboxylate into the CD site ligand array impedes backbone vibrational motion throughout the molecule.</description><subject>Calcium‐binding proteins</subject><subject>CD site, parvalbumin Ca2+‐binding site spanning residues 41–70 and including the C and D helices</subject><subject>dynamics</subject><subject>EF site, parvalbumin Ca2+‐binding site spanning residues 80–108 and including the E and F helices</subject><subject>EF‐hand proteins</subject><subject>Hepes, 4–(2‐hydroxyethyl)‐1‐piperazinesulfonic acid</subject><subject>HSQC, heteronuclear single quantum coherence</subject><subject>NMR</subject><subject>NMR, nuclear magnetic resonance</subject><subject>NOESY, nuclear Overhauser effect spectroscopy</subject><subject>parvalbumins</subject><subject>PV, parvalbumin</subject><subject>TOCSY, total correlated spectroscopy</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkE1OwzAUhC0EEqUgcQQfgLR2EsfxErVQkCqKoAt20YvzAkapG9lOf1hxBM7CQTgEJ6EUVvONNJrFR8g5ZwPOORu2fsBzzuID0uNppqJcZU-HpMdUxqM8yfJjcuL9K2Ms5XHSI29c3FHb6QbB0QU8WwxGU4d-acFq3FEDGwhmaakPXWXQ0x06CPTr8_v9owW3gqbsFsZSsBUNL0hbtAE0uHK52TYQkK7AGbDBX9BHIcb73UTl41NyVEPj8ew_-2R-fTUf3UTT2eR2dDmNOpnmUVlrqEFirEqsqlSmHDWTtaikwlJpGaNOtc5kIpRAqDAGwaTEuo4VkyVA0ifDv9u1aXBbtM4swG0LzopfX0Xri72v4v5htutc5MkPakNkUA</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Henzl, Michael T.</creator><creator>Wycoff, Wei G.</creator><creator>Larson, John D.</creator><creator>Likos, John J.</creator><general>Cold Spring Harbor Laboratory Press</general><scope/></search><sort><creationdate>200201</creationdate><title>15N nuclear magnetic resonance relaxation studies on rat β‐parvalbumin and the pentacarboxylate variants, S55D and G98D</title><author>Henzl, Michael T. ; Wycoff, Wei G. ; Larson, John D. ; Likos, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-u748-bfcafa7e29bedd4741ec07f5d79eb9c72ec4cc673595eade2a5077eff2907baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Calcium‐binding proteins</topic><topic>CD site, parvalbumin Ca2+‐binding site spanning residues 41–70 and including the C and D helices</topic><topic>dynamics</topic><topic>EF site, parvalbumin Ca2+‐binding site spanning residues 80–108 and including the E and F helices</topic><topic>EF‐hand proteins</topic><topic>Hepes, 4–(2‐hydroxyethyl)‐1‐piperazinesulfonic acid</topic><topic>HSQC, heteronuclear single quantum coherence</topic><topic>NMR</topic><topic>NMR, nuclear magnetic resonance</topic><topic>NOESY, nuclear Overhauser effect spectroscopy</topic><topic>parvalbumins</topic><topic>PV, parvalbumin</topic><topic>TOCSY, total correlated spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henzl, Michael T.</creatorcontrib><creatorcontrib>Wycoff, Wei G.</creatorcontrib><creatorcontrib>Larson, John D.</creatorcontrib><creatorcontrib>Likos, John J.</creatorcontrib><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henzl, Michael T.</au><au>Wycoff, Wei G.</au><au>Larson, John D.</au><au>Likos, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>15N nuclear magnetic resonance relaxation studies on rat β‐parvalbumin and the pentacarboxylate variants, S55D and G98D</atitle><jtitle>Protein science</jtitle><date>2002-01</date><risdate>2002</risdate><volume>11</volume><issue>1</issue><spage>158</spage><epage>173</epage><pages>158-173</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>15N relaxation data for Ca2+‐bound rat β‐parvalbumin (a.k.a. oncomodulin) were analyzed using the Lipari‐Szabo formalism and compared with existing data for rat α‐parvalbumin. Although the average S2 values for the two proteins are very similar (0.85 for α, 0.84 for β), residue‐by‐residue inspection reveals systematic differences. α tends to have the lower S2 value in helical regions; β tends to have the lower value in the loop regions. Rat β was also examined in the Ca2+‐free state. The 59 assigned residues displayed an average order parameter (0.90) significantly greater than the corresponding residues in the Ca2+‐loaded form. The pentacarboxylate variants of rat β—S55D and G98D—also were examined in the Ca2+‐bound state. Although both mutations significantly heighten Ca2+ affinity, they utilize distinct energetic strategies. S55D improves the Ca2+‐binding enthalpy; G98D improves the binding entropy. They also show disparate peptide backbone dynamics. Whereas β G98D displays an average order parameter (0.87) slightly greater than that of the wild‐type protein, β S55D displays an average order parameter (0.82) slightly lower than wild‐type β. Furthermore, whereas just two backbone N‐H bonds in β G98D show internal motion on the 20–200‐psec timescale, fully 52 of the 93 residues analyzed in β S55D show this behavior. These findings suggest that the increased electrostatic repulsion attendant to introduction of an additional carboxylate into the CD site ligand array impedes backbone vibrational motion throughout the molecule.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><doi>10.1110/ps.18102</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2002-01, Vol.11 (1), p.158-173
issn 0961-8368
1469-896X
language eng
recordid cdi_wiley_primary_10_1110_ps_18102_PRO110158
source Wiley; PubMed Central
subjects Calcium‐binding proteins
CD site, parvalbumin Ca2+‐binding site spanning residues 41–70 and including the C and D helices
dynamics
EF site, parvalbumin Ca2+‐binding site spanning residues 80–108 and including the E and F helices
EF‐hand proteins
Hepes, 4–(2‐hydroxyethyl)‐1‐piperazinesulfonic acid
HSQC, heteronuclear single quantum coherence
NMR
NMR, nuclear magnetic resonance
NOESY, nuclear Overhauser effect spectroscopy
parvalbumins
PV, parvalbumin
TOCSY, total correlated spectroscopy
title 15N nuclear magnetic resonance relaxation studies on rat β‐parvalbumin and the pentacarboxylate variants, S55D and G98D
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=15N%20nuclear%20magnetic%20resonance%20relaxation%20studies%20on%20rat%20%CE%B2%E2%80%90parvalbumin%20and%20the%20pentacarboxylate%20variants,%20S55D%20and%20G98D&rft.jtitle=Protein%20science&rft.au=Henzl,%20Michael%20T.&rft.date=2002-01&rft.volume=11&rft.issue=1&rft.spage=158&rft.epage=173&rft.pages=158-173&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.18102&rft_dat=%3Cwiley%3EPRO110158%3C/wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-u748-bfcafa7e29bedd4741ec07f5d79eb9c72ec4cc673595eade2a5077eff2907baa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true