Loading…

Mirror maps equal SYZ maps for toric Calabi–Yau surfaces

We prove that the mirror map is the Strominger–Yau–Zaslow map for every toric Calabi–Yau surface. As a consequence, one obtains an enumerative meaning of the mirror map. This involves computing genus‐0 open Gromov–Witten invariants, which is done by relating them with closed Gromov–Witten invariants...

Full description

Saved in:
Bibliographic Details
Published in:The Bulletin of the London Mathematical Society 2012-04, Vol.44 (2), p.255-270
Main Authors: Lau, Siu‐Cheong, Leung, Naichung Conan, Wu, Baosen
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 270
container_issue 2
container_start_page 255
container_title The Bulletin of the London Mathematical Society
container_volume 44
creator Lau, Siu‐Cheong
Leung, Naichung Conan
Wu, Baosen
description We prove that the mirror map is the Strominger–Yau–Zaslow map for every toric Calabi–Yau surface. As a consequence, one obtains an enumerative meaning of the mirror map. This involves computing genus‐0 open Gromov–Witten invariants, which is done by relating them with closed Gromov–Witten invariants via compactification and using an earlier computation by Bryan–Leung.
doi_str_mv 10.1112/blms/bdr090
format article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1112_blms_bdr090_BLMS0255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS0255</sourcerecordid><originalsourceid>FETCH-LOGICAL-w1275-f074b2262f06fc906af27e61773d3af5e318ada87811b29693d7178468bb10913</originalsourceid><addsrcrecordid>eNotz01OwzAUBGALgURoWXGBXCD0PTuxY3YQ8SelYtGyKBvrObGloEQtNlHVHXfghpwEqrAazSxG-hi7QrhGRL6w_RAXtg2g4YQlmEudceRwyhIAnmcStDhnFzG-A6AAhQm7WXYhbEM60C6m7mOkPl1t3qbq__bPbeiatKKebPfz9b2hMY1j8NS4OGdnnvroLv9zxl4f7tfVU1a_PD5Xt3W2R66KzIPKLeeSe5C-0SDJc-UkKiVaQb5wAktqqVQlouVaatEqVGUuS2sRNIoZw-l33_XuYHahGygcDII5ms3RbCazuauXK-BFIX4B9z9MsQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mirror maps equal SYZ maps for toric Calabi–Yau surfaces</title><source>Wiley</source><creator>Lau, Siu‐Cheong ; Leung, Naichung Conan ; Wu, Baosen</creator><creatorcontrib>Lau, Siu‐Cheong ; Leung, Naichung Conan ; Wu, Baosen</creatorcontrib><description>We prove that the mirror map is the Strominger–Yau–Zaslow map for every toric Calabi–Yau surface. As a consequence, one obtains an enumerative meaning of the mirror map. This involves computing genus‐0 open Gromov–Witten invariants, which is done by relating them with closed Gromov–Witten invariants via compactification and using an earlier computation by Bryan–Leung.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bdr090</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2012-04, Vol.44 (2), p.255-270</ispartof><rights>2011 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lau, Siu‐Cheong</creatorcontrib><creatorcontrib>Leung, Naichung Conan</creatorcontrib><creatorcontrib>Wu, Baosen</creatorcontrib><title>Mirror maps equal SYZ maps for toric Calabi–Yau surfaces</title><title>The Bulletin of the London Mathematical Society</title><description>We prove that the mirror map is the Strominger–Yau–Zaslow map for every toric Calabi–Yau surface. As a consequence, one obtains an enumerative meaning of the mirror map. This involves computing genus‐0 open Gromov–Witten invariants, which is done by relating them with closed Gromov–Witten invariants via compactification and using an earlier computation by Bryan–Leung.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotz01OwzAUBGALgURoWXGBXCD0PTuxY3YQ8SelYtGyKBvrObGloEQtNlHVHXfghpwEqrAazSxG-hi7QrhGRL6w_RAXtg2g4YQlmEudceRwyhIAnmcStDhnFzG-A6AAhQm7WXYhbEM60C6m7mOkPl1t3qbq__bPbeiatKKebPfz9b2hMY1j8NS4OGdnnvroLv9zxl4f7tfVU1a_PD5Xt3W2R66KzIPKLeeSe5C-0SDJc-UkKiVaQb5wAktqqVQlouVaatEqVGUuS2sRNIoZw-l33_XuYHahGygcDII5ms3RbCazuauXK-BFIX4B9z9MsQ</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Lau, Siu‐Cheong</creator><creator>Leung, Naichung Conan</creator><creator>Wu, Baosen</creator><general>Oxford University Press</general><scope/></search><sort><creationdate>201204</creationdate><title>Mirror maps equal SYZ maps for toric Calabi–Yau surfaces</title><author>Lau, Siu‐Cheong ; Leung, Naichung Conan ; Wu, Baosen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-w1275-f074b2262f06fc906af27e61773d3af5e318ada87811b29693d7178468bb10913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Siu‐Cheong</creatorcontrib><creatorcontrib>Leung, Naichung Conan</creatorcontrib><creatorcontrib>Wu, Baosen</creatorcontrib><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Siu‐Cheong</au><au>Leung, Naichung Conan</au><au>Wu, Baosen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mirror maps equal SYZ maps for toric Calabi–Yau surfaces</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2012-04</date><risdate>2012</risdate><volume>44</volume><issue>2</issue><spage>255</spage><epage>270</epage><pages>255-270</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We prove that the mirror map is the Strominger–Yau–Zaslow map for every toric Calabi–Yau surface. As a consequence, one obtains an enumerative meaning of the mirror map. This involves computing genus‐0 open Gromov–Witten invariants, which is done by relating them with closed Gromov–Witten invariants via compactification and using an earlier computation by Bryan–Leung.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bdr090</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2012-04, Vol.44 (2), p.255-270
issn 0024-6093
1469-2120
language eng
recordid cdi_wiley_primary_10_1112_blms_bdr090_BLMS0255
source Wiley
title Mirror maps equal SYZ maps for toric Calabi–Yau surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mirror%20maps%20equal%20SYZ%20maps%20for%20toric%20Calabi%E2%80%93Yau%20surfaces&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Lau,%20Siu%E2%80%90Cheong&rft.date=2012-04&rft.volume=44&rft.issue=2&rft.spage=255&rft.epage=270&rft.pages=255-270&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bdr090&rft_dat=%3Cwiley%3EBLMS0255%3C/wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-w1275-f074b2262f06fc906af27e61773d3af5e318ada87811b29693d7178468bb10913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true