Loading…

Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals

Purpose: Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2013-01, Vol.40 (1), p.013302-n/a
Main Authors: Gateau, Jérôme, Caballero, Miguel Ángel Araque, Dima, Alexander, Ntziachristos, Vasilis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253
cites cdi_FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253
container_end_page n/a
container_issue 1
container_start_page 013302
container_title Medical physics (Lancaster)
container_volume 40
creator Gateau, Jérôme
Caballero, Miguel Ángel Araque
Dima, Alexander
Ntziachristos, Vasilis
description Purpose: Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. Methods: The detection geometry was tested using a 128-element linear array (5.0/7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation/translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms andex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. Results: The resolution of the optoacoustic tomography system was measured to be better than 130μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Conclusions: Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.
doi_str_mv 10.1118/1.4770292
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1118_1_4770292_MP0292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1291599782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253</originalsourceid><addsrcrecordid>eNp9kdGK1DAUhoMo7rh64QtILl2ha5Kmk8a7ZVFXGNGLFS_DaXu6E0mbMUlH-hY-shk6zgqi5OKH8OVLcn5CnnN2yTmvX_NLqRQTWjwgKyFVWUjB9EOyYkzLQkhWnZEnMX5jjK3Lij0mZ6IUuuaCr8jP221ALDo74BitH8FRv0seWj_FZFua_ODvAuy2M52iHe8o0NaPexzTAk8uBYh-Gjvq7IgQaIcJ2-QDhRBgfkO_br3DovHdfC_L4jjHhAPtMxgHcI7CaHPGp-RRnwOfHfOcfHn39vb6pth8ev_h-mpTtHItRLFGDetSYJNXKRvdNVIq4Cr_EGStpWgVqEqUddcwpWpsBFQ6jwOwb0olqvKcXCzeLTizC_nuMBsP1txcbcxhj7Fa1aKSe57Zlwu7C_77hDGZwcYWnYMR85wMF5pXWmf8XtsGH2PA_uTmzBzKMtwcy8rsi6N2agbsTuTvdjJQLMAP63D-t8l8_HwUvlr42NoEh4ZOZ_Y-_MHvuv5_8N9P_QX1K7sJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291599782</pqid></control><display><type>article</type><title>Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gateau, Jérôme ; Caballero, Miguel Ángel Araque ; Dima, Alexander ; Ntziachristos, Vasilis</creator><creatorcontrib>Gateau, Jérôme ; Caballero, Miguel Ángel Araque ; Dima, Alexander ; Ntziachristos, Vasilis</creatorcontrib><description>Purpose: Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. Methods: The detection geometry was tested using a 128-element linear array (5.0/7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation/translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms andex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. Results: The resolution of the optoacoustic tomography system was measured to be better than 130μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Conclusions: Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4770292</identifier><identifier>PMID: 23298121</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Abdomen ; acoustic imaging ; Acoustooptical effects ; Animals ; biological organs ; biological tissues ; biomedical optical imaging ; biomedical ultrasonics ; blood vessels ; computed tomography ; Detector arrays ; Diagnosis using ultrasonic, sonic or infrasonic waves ; Digital computing or data processing equipment or methods, specially adapted for specific applications ; geometry ; Head ; Illumination ; Image data processing or generation, in general ; image reconstruction ; Image sensors ; Imaging, Three-Dimensional - instrumentation ; infrared spectra ; laser applications in medicine ; linear array ; medical image processing ; Medical imaging ; Medical Physics ; Mice ; optical tomography ; optoacoustic ; phantoms ; photoacoustic effect ; Photoacoustic Techniques - instrumentation ; Physics ; Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency ; small animal imaging ; Spatial resolution ; Tissues ; Tomography ; Tomography - instrumentation ; ultrasonic transducers ; ultrasonic waves ; Ultrasonics - instrumentation ; Ultrasonography ; ultrasound ; Visual imaging</subject><ispartof>Medical physics (Lancaster), 2013-01, Vol.40 (1), p.013302-n/a</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2013 American Association of Physicists in Medicine</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253</citedby><cites>FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253</cites><orcidid>0000-0001-5230-8988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23298121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00878254$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gateau, Jérôme</creatorcontrib><creatorcontrib>Caballero, Miguel Ángel Araque</creatorcontrib><creatorcontrib>Dima, Alexander</creatorcontrib><creatorcontrib>Ntziachristos, Vasilis</creatorcontrib><title>Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose: Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. Methods: The detection geometry was tested using a 128-element linear array (5.0/7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation/translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms andex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. Results: The resolution of the optoacoustic tomography system was measured to be better than 130μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Conclusions: Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.</description><subject>Abdomen</subject><subject>acoustic imaging</subject><subject>Acoustooptical effects</subject><subject>Animals</subject><subject>biological organs</subject><subject>biological tissues</subject><subject>biomedical optical imaging</subject><subject>biomedical ultrasonics</subject><subject>blood vessels</subject><subject>computed tomography</subject><subject>Detector arrays</subject><subject>Diagnosis using ultrasonic, sonic or infrasonic waves</subject><subject>Digital computing or data processing equipment or methods, specially adapted for specific applications</subject><subject>geometry</subject><subject>Head</subject><subject>Illumination</subject><subject>Image data processing or generation, in general</subject><subject>image reconstruction</subject><subject>Image sensors</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>infrared spectra</subject><subject>laser applications in medicine</subject><subject>linear array</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Medical Physics</subject><subject>Mice</subject><subject>optical tomography</subject><subject>optoacoustic</subject><subject>phantoms</subject><subject>photoacoustic effect</subject><subject>Photoacoustic Techniques - instrumentation</subject><subject>Physics</subject><subject>Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency</subject><subject>small animal imaging</subject><subject>Spatial resolution</subject><subject>Tissues</subject><subject>Tomography</subject><subject>Tomography - instrumentation</subject><subject>ultrasonic transducers</subject><subject>ultrasonic waves</subject><subject>Ultrasonics - instrumentation</subject><subject>Ultrasonography</subject><subject>ultrasound</subject><subject>Visual imaging</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kdGK1DAUhoMo7rh64QtILl2ha5Kmk8a7ZVFXGNGLFS_DaXu6E0mbMUlH-hY-shk6zgqi5OKH8OVLcn5CnnN2yTmvX_NLqRQTWjwgKyFVWUjB9EOyYkzLQkhWnZEnMX5jjK3Lij0mZ6IUuuaCr8jP221ALDo74BitH8FRv0seWj_FZFua_ODvAuy2M52iHe8o0NaPexzTAk8uBYh-Gjvq7IgQaIcJ2-QDhRBgfkO_br3DovHdfC_L4jjHhAPtMxgHcI7CaHPGp-RRnwOfHfOcfHn39vb6pth8ev_h-mpTtHItRLFGDetSYJNXKRvdNVIq4Cr_EGStpWgVqEqUddcwpWpsBFQ6jwOwb0olqvKcXCzeLTizC_nuMBsP1txcbcxhj7Fa1aKSe57Zlwu7C_77hDGZwcYWnYMR85wMF5pXWmf8XtsGH2PA_uTmzBzKMtwcy8rsi6N2agbsTuTvdjJQLMAP63D-t8l8_HwUvlr42NoEh4ZOZ_Y-_MHvuv5_8N9P_QX1K7sJ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Gateau, Jérôme</creator><creator>Caballero, Miguel Ángel Araque</creator><creator>Dima, Alexander</creator><creator>Ntziachristos, Vasilis</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5230-8988</orcidid></search><sort><creationdate>201301</creationdate><title>Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals</title><author>Gateau, Jérôme ; Caballero, Miguel Ángel Araque ; Dima, Alexander ; Ntziachristos, Vasilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abdomen</topic><topic>acoustic imaging</topic><topic>Acoustooptical effects</topic><topic>Animals</topic><topic>biological organs</topic><topic>biological tissues</topic><topic>biomedical optical imaging</topic><topic>biomedical ultrasonics</topic><topic>blood vessels</topic><topic>computed tomography</topic><topic>Detector arrays</topic><topic>Diagnosis using ultrasonic, sonic or infrasonic waves</topic><topic>Digital computing or data processing equipment or methods, specially adapted for specific applications</topic><topic>geometry</topic><topic>Head</topic><topic>Illumination</topic><topic>Image data processing or generation, in general</topic><topic>image reconstruction</topic><topic>Image sensors</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>infrared spectra</topic><topic>laser applications in medicine</topic><topic>linear array</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Medical Physics</topic><topic>Mice</topic><topic>optical tomography</topic><topic>optoacoustic</topic><topic>phantoms</topic><topic>photoacoustic effect</topic><topic>Photoacoustic Techniques - instrumentation</topic><topic>Physics</topic><topic>Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency</topic><topic>small animal imaging</topic><topic>Spatial resolution</topic><topic>Tissues</topic><topic>Tomography</topic><topic>Tomography - instrumentation</topic><topic>ultrasonic transducers</topic><topic>ultrasonic waves</topic><topic>Ultrasonics - instrumentation</topic><topic>Ultrasonography</topic><topic>ultrasound</topic><topic>Visual imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gateau, Jérôme</creatorcontrib><creatorcontrib>Caballero, Miguel Ángel Araque</creatorcontrib><creatorcontrib>Dima, Alexander</creatorcontrib><creatorcontrib>Ntziachristos, Vasilis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gateau, Jérôme</au><au>Caballero, Miguel Ángel Araque</au><au>Dima, Alexander</au><au>Ntziachristos, Vasilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2013-01</date><risdate>2013</risdate><volume>40</volume><issue>1</issue><spage>013302</spage><epage>n/a</epage><pages>013302-n/a</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Purpose: Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. Methods: The detection geometry was tested using a 128-element linear array (5.0/7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation/translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms andex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. Results: The resolution of the optoacoustic tomography system was measured to be better than 130μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Conclusions: Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>23298121</pmid><doi>10.1118/1.4770292</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5230-8988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2013-01, Vol.40 (1), p.013302-n/a
issn 0094-2405
2473-4209
language eng
recordid cdi_wiley_primary_10_1118_1_4770292_MP0292
source Wiley-Blackwell Read & Publish Collection
subjects Abdomen
acoustic imaging
Acoustooptical effects
Animals
biological organs
biological tissues
biomedical optical imaging
biomedical ultrasonics
blood vessels
computed tomography
Detector arrays
Diagnosis using ultrasonic, sonic or infrasonic waves
Digital computing or data processing equipment or methods, specially adapted for specific applications
geometry
Head
Illumination
Image data processing or generation, in general
image reconstruction
Image sensors
Imaging, Three-Dimensional - instrumentation
infrared spectra
laser applications in medicine
linear array
medical image processing
Medical imaging
Medical Physics
Mice
optical tomography
optoacoustic
phantoms
photoacoustic effect
Photoacoustic Techniques - instrumentation
Physics
Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency
small animal imaging
Spatial resolution
Tissues
Tomography
Tomography - instrumentation
ultrasonic transducers
ultrasonic waves
Ultrasonics - instrumentation
Ultrasonography
ultrasound
Visual imaging
title Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20optoacoustic%20tomography%20using%20a%20conventional%20ultrasound%20linear%20detector%20array:%20Whole-body%20tomographic%20system%20for%20small%20animals&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Gateau,%20J%C3%A9r%C3%B4me&rft.date=2013-01&rft.volume=40&rft.issue=1&rft.spage=013302&rft.epage=n/a&rft.pages=013302-n/a&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.4770292&rft_dat=%3Cproquest_wiley%3E1291599782%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4622-6e9a632ebebe34b9db447a17063a48942c7a75238db0778eb2a59094aefb37253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291599782&rft_id=info:pmid/23298121&rfr_iscdi=true