Loading…

Computer-aided diagnoses: Automatic detection of lung nodules

This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspiciou...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 1998-10, Vol.25 (10), p.1998-2006
Main Authors: Carreira, Marı́a J., Cabello, Diego, Penedo, Manuel G., Mosquera, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3
cites cdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3
container_end_page 2006
container_issue 10
container_start_page 1998
container_title Medical physics (Lancaster)
container_volume 25
creator Carreira, Marı́a J.
Cabello, Diego
Penedo, Manuel G.
Mosquera, Antonio
description This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.
doi_str_mv 10.1118/1.598388
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1118_1_598388_MP8388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70020372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo6_oB_gGhJ1Gw6yRpN6ngYVn8ghU96Dmk6XSJtM3atMr-e7u0rAfRwzCH95mX4SHkhMKEUiqv6CROJJdyh4xZJHgYMUh2yRggiUIWQbxPDrx_B4Apj2FERokEEJCMyc3clau2wTrUNsMsyKxeVs6jvw5mbeNK3VgTZNigaayrApcHRVstg8plbYH-iOzluvB4POxD8nZ3-zp_CBfP94_z2SI0vPsqFLGZgkauE53FFABpFKUGJaYRF8aYXBg2ZSalIHMUjHGTgDQQbyamNOeH5KzvXdXuo0XfqNJ6g0WhK3StVwKAAResA8970NTO-xpztaptqeu1oqA2phRVvakOPR0627TEbAsOarr8ss-_bIHrP3vU08tQd9Hj3thGb2RtTz5d_YOvsvw_9teb365Mi28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70020372</pqid></control><display><type>article</type><title>Computer-aided diagnoses: Automatic detection of lung nodules</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Carreira, Marı́a J. ; Cabello, Diego ; Penedo, Manuel G. ; Mosquera, Antonio</creator><creatorcontrib>Carreira, Marı́a J. ; Cabello, Diego ; Penedo, Manuel G. ; Mosquera, Antonio</creatorcontrib><description>This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.598388</identifier><identifier>PMID: 9800709</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>87.56.01.a ; Algorithms ; Artificial Intelligence ; Biophysical Phenomena ; Biophysics ; chest radiography ; Computer Simulation ; computer‐aided diagnoses ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Computer-Assisted - statistics &amp; numerical data ; diagnostic radiography ; False Positive Reactions ; feature extraction ; Humans ; Image analysis ; Image detection systems ; Image processing ; knowledge based systems ; lung ; Lung Neoplasms - diagnostic imaging ; lung nodule detection ; Lungs ; Medical image contrast ; medical image processing ; Medical imaging ; Numerical modeling ; pattern recognition ; Physicists ; Radiographic Image Enhancement - methods ; Radiography</subject><ispartof>Medical physics (Lancaster), 1998-10, Vol.25 (10), p.1998-2006</ispartof><rights>American Association of Physicists in Medicine</rights><rights>1998 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</citedby><cites>FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9800709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carreira, Marı́a J.</creatorcontrib><creatorcontrib>Cabello, Diego</creatorcontrib><creatorcontrib>Penedo, Manuel G.</creatorcontrib><creatorcontrib>Mosquera, Antonio</creatorcontrib><title>Computer-aided diagnoses: Automatic detection of lung nodules</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.</description><subject>87.56.01.a</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>chest radiography</subject><subject>Computer Simulation</subject><subject>computer‐aided diagnoses</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Computer-Assisted - statistics &amp; numerical data</subject><subject>diagnostic radiography</subject><subject>False Positive Reactions</subject><subject>feature extraction</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image detection systems</subject><subject>Image processing</subject><subject>knowledge based systems</subject><subject>lung</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>lung nodule detection</subject><subject>Lungs</subject><subject>Medical image contrast</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Numerical modeling</subject><subject>pattern recognition</subject><subject>Physicists</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiography</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo6_oB_gGhJ1Gw6yRpN6ngYVn8ghU96Dmk6XSJtM3atMr-e7u0rAfRwzCH95mX4SHkhMKEUiqv6CROJJdyh4xZJHgYMUh2yRggiUIWQbxPDrx_B4Apj2FERokEEJCMyc3clau2wTrUNsMsyKxeVs6jvw5mbeNK3VgTZNigaayrApcHRVstg8plbYH-iOzluvB4POxD8nZ3-zp_CBfP94_z2SI0vPsqFLGZgkauE53FFABpFKUGJaYRF8aYXBg2ZSalIHMUjHGTgDQQbyamNOeH5KzvXdXuo0XfqNJ6g0WhK3StVwKAAResA8970NTO-xpztaptqeu1oqA2phRVvakOPR0627TEbAsOarr8ss-_bIHrP3vU08tQd9Hj3thGb2RtTz5d_YOvsvw_9teb365Mi28</recordid><startdate>199810</startdate><enddate>199810</enddate><creator>Carreira, Marı́a J.</creator><creator>Cabello, Diego</creator><creator>Penedo, Manuel G.</creator><creator>Mosquera, Antonio</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199810</creationdate><title>Computer-aided diagnoses: Automatic detection of lung nodules</title><author>Carreira, Marı́a J. ; Cabello, Diego ; Penedo, Manuel G. ; Mosquera, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>87.56.01.a</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>chest radiography</topic><topic>Computer Simulation</topic><topic>computer‐aided diagnoses</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Computer-Assisted - statistics &amp; numerical data</topic><topic>diagnostic radiography</topic><topic>False Positive Reactions</topic><topic>feature extraction</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image detection systems</topic><topic>Image processing</topic><topic>knowledge based systems</topic><topic>lung</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>lung nodule detection</topic><topic>Lungs</topic><topic>Medical image contrast</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Numerical modeling</topic><topic>pattern recognition</topic><topic>Physicists</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreira, Marı́a J.</creatorcontrib><creatorcontrib>Cabello, Diego</creatorcontrib><creatorcontrib>Penedo, Manuel G.</creatorcontrib><creatorcontrib>Mosquera, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carreira, Marı́a J.</au><au>Cabello, Diego</au><au>Penedo, Manuel G.</au><au>Mosquera, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided diagnoses: Automatic detection of lung nodules</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>1998-10</date><risdate>1998</risdate><volume>25</volume><issue>10</issue><spage>1998</spage><epage>2006</epage><pages>1998-2006</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>9800709</pmid><doi>10.1118/1.598388</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 1998-10, Vol.25 (10), p.1998-2006
issn 0094-2405
2473-4209
language eng
recordid cdi_wiley_primary_10_1118_1_598388_MP8388
source Wiley-Blackwell Read & Publish Collection
subjects 87.56.01.a
Algorithms
Artificial Intelligence
Biophysical Phenomena
Biophysics
chest radiography
Computer Simulation
computer‐aided diagnoses
Diagnosis, Computer-Assisted - methods
Diagnosis, Computer-Assisted - statistics & numerical data
diagnostic radiography
False Positive Reactions
feature extraction
Humans
Image analysis
Image detection systems
Image processing
knowledge based systems
lung
Lung Neoplasms - diagnostic imaging
lung nodule detection
Lungs
Medical image contrast
medical image processing
Medical imaging
Numerical modeling
pattern recognition
Physicists
Radiographic Image Enhancement - methods
Radiography
title Computer-aided diagnoses: Automatic detection of lung nodules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20diagnoses:%20Automatic%20detection%20of%20lung%20nodules&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Carreira,%20Mar%C4%B1%CC%81a%20J.&rft.date=1998-10&rft.volume=25&rft.issue=10&rft.spage=1998&rft.epage=2006&rft.pages=1998-2006&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.598388&rft_dat=%3Cproquest_wiley%3E70020372%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70020372&rft_id=info:pmid/9800709&rfr_iscdi=true