Loading…
Computer-aided diagnoses: Automatic detection of lung nodules
This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspiciou...
Saved in:
Published in: | Medical physics (Lancaster) 1998-10, Vol.25 (10), p.1998-2006 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3 |
container_end_page | 2006 |
container_issue | 10 |
container_start_page | 1998 |
container_title | Medical physics (Lancaster) |
container_volume | 25 |
creator | Carreira, Marı́a J. Cabello, Diego Penedo, Manuel G. Mosquera, Antonio |
description | This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%. |
doi_str_mv | 10.1118/1.598388 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1118_1_598388_MP8388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70020372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo6_oB_gGhJ1Gw6yRpN6ngYVn8ghU96Dmk6XSJtM3atMr-e7u0rAfRwzCH95mX4SHkhMKEUiqv6CROJJdyh4xZJHgYMUh2yRggiUIWQbxPDrx_B4Apj2FERokEEJCMyc3clau2wTrUNsMsyKxeVs6jvw5mbeNK3VgTZNigaayrApcHRVstg8plbYH-iOzluvB4POxD8nZ3-zp_CBfP94_z2SI0vPsqFLGZgkauE53FFABpFKUGJaYRF8aYXBg2ZSalIHMUjHGTgDQQbyamNOeH5KzvXdXuo0XfqNJ6g0WhK3StVwKAAResA8970NTO-xpztaptqeu1oqA2phRVvakOPR0627TEbAsOarr8ss-_bIHrP3vU08tQd9Hj3thGb2RtTz5d_YOvsvw_9teb365Mi28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70020372</pqid></control><display><type>article</type><title>Computer-aided diagnoses: Automatic detection of lung nodules</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Carreira, Marı́a J. ; Cabello, Diego ; Penedo, Manuel G. ; Mosquera, Antonio</creator><creatorcontrib>Carreira, Marı́a J. ; Cabello, Diego ; Penedo, Manuel G. ; Mosquera, Antonio</creatorcontrib><description>This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.598388</identifier><identifier>PMID: 9800709</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>87.56.01.a ; Algorithms ; Artificial Intelligence ; Biophysical Phenomena ; Biophysics ; chest radiography ; Computer Simulation ; computer‐aided diagnoses ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Computer-Assisted - statistics & numerical data ; diagnostic radiography ; False Positive Reactions ; feature extraction ; Humans ; Image analysis ; Image detection systems ; Image processing ; knowledge based systems ; lung ; Lung Neoplasms - diagnostic imaging ; lung nodule detection ; Lungs ; Medical image contrast ; medical image processing ; Medical imaging ; Numerical modeling ; pattern recognition ; Physicists ; Radiographic Image Enhancement - methods ; Radiography</subject><ispartof>Medical physics (Lancaster), 1998-10, Vol.25 (10), p.1998-2006</ispartof><rights>American Association of Physicists in Medicine</rights><rights>1998 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</citedby><cites>FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9800709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carreira, Marı́a J.</creatorcontrib><creatorcontrib>Cabello, Diego</creatorcontrib><creatorcontrib>Penedo, Manuel G.</creatorcontrib><creatorcontrib>Mosquera, Antonio</creatorcontrib><title>Computer-aided diagnoses: Automatic detection of lung nodules</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.</description><subject>87.56.01.a</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>chest radiography</subject><subject>Computer Simulation</subject><subject>computer‐aided diagnoses</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Computer-Assisted - statistics & numerical data</subject><subject>diagnostic radiography</subject><subject>False Positive Reactions</subject><subject>feature extraction</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image detection systems</subject><subject>Image processing</subject><subject>knowledge based systems</subject><subject>lung</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>lung nodule detection</subject><subject>Lungs</subject><subject>Medical image contrast</subject><subject>medical image processing</subject><subject>Medical imaging</subject><subject>Numerical modeling</subject><subject>pattern recognition</subject><subject>Physicists</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiography</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo6_oB_gGhJ1Gw6yRpN6ngYVn8ghU96Dmk6XSJtM3atMr-e7u0rAfRwzCH95mX4SHkhMKEUiqv6CROJJdyh4xZJHgYMUh2yRggiUIWQbxPDrx_B4Apj2FERokEEJCMyc3clau2wTrUNsMsyKxeVs6jvw5mbeNK3VgTZNigaayrApcHRVstg8plbYH-iOzluvB4POxD8nZ3-zp_CBfP94_z2SI0vPsqFLGZgkauE53FFABpFKUGJaYRF8aYXBg2ZSalIHMUjHGTgDQQbyamNOeH5KzvXdXuo0XfqNJ6g0WhK3StVwKAAResA8970NTO-xpztaptqeu1oqA2phRVvakOPR0627TEbAsOarr8ss-_bIHrP3vU08tQd9Hj3thGb2RtTz5d_YOvsvw_9teb365Mi28</recordid><startdate>199810</startdate><enddate>199810</enddate><creator>Carreira, Marı́a J.</creator><creator>Cabello, Diego</creator><creator>Penedo, Manuel G.</creator><creator>Mosquera, Antonio</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199810</creationdate><title>Computer-aided diagnoses: Automatic detection of lung nodules</title><author>Carreira, Marı́a J. ; Cabello, Diego ; Penedo, Manuel G. ; Mosquera, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>87.56.01.a</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>chest radiography</topic><topic>Computer Simulation</topic><topic>computer‐aided diagnoses</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Computer-Assisted - statistics & numerical data</topic><topic>diagnostic radiography</topic><topic>False Positive Reactions</topic><topic>feature extraction</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image detection systems</topic><topic>Image processing</topic><topic>knowledge based systems</topic><topic>lung</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>lung nodule detection</topic><topic>Lungs</topic><topic>Medical image contrast</topic><topic>medical image processing</topic><topic>Medical imaging</topic><topic>Numerical modeling</topic><topic>pattern recognition</topic><topic>Physicists</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreira, Marı́a J.</creatorcontrib><creatorcontrib>Cabello, Diego</creatorcontrib><creatorcontrib>Penedo, Manuel G.</creatorcontrib><creatorcontrib>Mosquera, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carreira, Marı́a J.</au><au>Cabello, Diego</au><au>Penedo, Manuel G.</au><au>Mosquera, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided diagnoses: Automatic detection of lung nodules</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>1998-10</date><risdate>1998</risdate><volume>25</volume><issue>10</issue><spage>1998</spage><epage>2006</epage><pages>1998-2006</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>9800709</pmid><doi>10.1118/1.598388</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 1998-10, Vol.25 (10), p.1998-2006 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_wiley_primary_10_1118_1_598388_MP8388 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 87.56.01.a Algorithms Artificial Intelligence Biophysical Phenomena Biophysics chest radiography Computer Simulation computer‐aided diagnoses Diagnosis, Computer-Assisted - methods Diagnosis, Computer-Assisted - statistics & numerical data diagnostic radiography False Positive Reactions feature extraction Humans Image analysis Image detection systems Image processing knowledge based systems lung Lung Neoplasms - diagnostic imaging lung nodule detection Lungs Medical image contrast medical image processing Medical imaging Numerical modeling pattern recognition Physicists Radiographic Image Enhancement - methods Radiography |
title | Computer-aided diagnoses: Automatic detection of lung nodules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20diagnoses:%20Automatic%20detection%20of%20lung%20nodules&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Carreira,%20Mar%C4%B1%CC%81a%20J.&rft.date=1998-10&rft.volume=25&rft.issue=10&rft.spage=1998&rft.epage=2006&rft.pages=1998-2006&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.598388&rft_dat=%3Cproquest_wiley%3E70020372%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3838-75c60ae3a9ad5100e144bce8eb437cccf7c262cb108fe7223c908c058c05511f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70020372&rft_id=info:pmid/9800709&rfr_iscdi=true |