Loading…

Abstract 14675: Developing Convolutional Neural Networks for Deep Learning of Ventricular Action Potentials to Predict Risk for Ventricular Arrhythmias

BackgroundIt is unclear if machine learning can be trained to recognize electrophysiological signal features which represent pathological remodeling in patients with coronary disease (CAD) and left ventricular (LV) dysfunction at risk for sudden cardiac arrest (SCA).ObjectiveDevelop and optimize alt...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A14675-A14675
Main Authors: Selvalingam, Anojan, Alhusseini, Mahmood, Rogers, Albert J, Krummen, David E, Abuzaid, Firas M, Zaman, Junaid A, Baykaner, Tina, Clopton, Paul L, Bailis, Peter, Zaharia, Matei, Narayan, Sanjiv M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page A14675
container_issue Suppl_1 Suppl 1
container_start_page A14675
container_title Circulation (New York, N.Y.)
container_volume 140
creator Selvalingam, Anojan
Alhusseini, Mahmood
Rogers, Albert J
Krummen, David E
Abuzaid, Firas M
Zaman, Junaid A
Baykaner, Tina
Clopton, Paul L
Bailis, Peter
Zaharia, Matei
Narayan, Sanjiv M
description BackgroundIt is unclear if machine learning can be trained to recognize electrophysiological signal features which represent pathological remodeling in patients with coronary disease (CAD) and left ventricular (LV) dysfunction at risk for sudden cardiac arrest (SCA).ObjectiveDevelop and optimize alternative convolutional neural network (CNN) models to learn the shape of ventricular monophasic action potentials (MAPs) and predict SCA risk.MethodsIn 26 patients with CAD and LV ejection fraction ≤ 40%, MAP voltage time series (fig. A) were recorded at 1 kHz in right (RV) and left (LV) ventricles at EP study. CNNs were iteratively developed in keras (Python) and trained to labels of ICD therapy (0/1) at 752+493 days. The network was trained on 3062 MAPs and validated in 518 independent MAPs.ResultsPatients had age 62.0±18.7 Y, LVEF 28.0±8.3%. Fig. A shows final deep neural network (DNN) architecture comprising 3 convolutional and 2 recurrent neural layers. Training was performed using k-cross validation (CV) with k = 7. Fig. B shows training accuracy of the DNN at >99%. In several independent validation sets, DNN predicted SCA with accuracies up to 78%.ConclusionsWe present the technical development of deep neural networks for ventricular action potentials, which predicted SCA at 2-3 year follow-up. Future studies should determine if these results can be extended by alternative learning models and by combining additional electrophysiological features.
doi_str_mv 10.1161/circ.140.suppl_1.14675
format article
fullrecord <record><control><sourceid>wolterskluwer</sourceid><recordid>TN_cdi_wolterskluwer_health_00003017-201911191-02675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>00003017-201911191-02675</sourcerecordid><originalsourceid>FETCH-wolterskluwer_health_00003017-201911191-026753</originalsourceid><addsrcrecordid>eNqdj01KxEAQhRtRMP5cQeoCiV35Je6GUXExyCDiNrSxYtq06VDdmeBJvK49gxu3LopXVbyviifEFcoEscTrVnObYC4TN0-TaTD0ZVUciQiLNI_zIquPRSSlrOMqS9NTcebcRxjLrCoi8b16dZ5V6-FA3cAt7cjYSY_vsLbjzprZazsqA48080H8Ynlw0FkOZppgQ4rHvd928EKjZ93ORjGs2j0JW-vDUivjwFvYMr3p8O1Ju-Fw4g_B3H_5_lMrdyFOuoDQ5a-ei_z-7nn9EC_WeGI3mHkhbnpSxvdNiCMziVWcSqwRQ8UyDXGyf2I_OARqIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstract 14675: Developing Convolutional Neural Networks for Deep Learning of Ventricular Action Potentials to Predict Risk for Ventricular Arrhythmias</title><source>EZB Electronic Journals Library</source><creator>Selvalingam, Anojan ; Alhusseini, Mahmood ; Rogers, Albert J ; Krummen, David E ; Abuzaid, Firas M ; Zaman, Junaid A ; Baykaner, Tina ; Clopton, Paul L ; Bailis, Peter ; Zaharia, Matei ; Narayan, Sanjiv M</creator><creatorcontrib>Selvalingam, Anojan ; Alhusseini, Mahmood ; Rogers, Albert J ; Krummen, David E ; Abuzaid, Firas M ; Zaman, Junaid A ; Baykaner, Tina ; Clopton, Paul L ; Bailis, Peter ; Zaharia, Matei ; Narayan, Sanjiv M</creatorcontrib><description>BackgroundIt is unclear if machine learning can be trained to recognize electrophysiological signal features which represent pathological remodeling in patients with coronary disease (CAD) and left ventricular (LV) dysfunction at risk for sudden cardiac arrest (SCA).ObjectiveDevelop and optimize alternative convolutional neural network (CNN) models to learn the shape of ventricular monophasic action potentials (MAPs) and predict SCA risk.MethodsIn 26 patients with CAD and LV ejection fraction ≤ 40%, MAP voltage time series (fig. A) were recorded at 1 kHz in right (RV) and left (LV) ventricles at EP study. CNNs were iteratively developed in keras (Python) and trained to labels of ICD therapy (0/1) at 752+493 days. The network was trained on 3062 MAPs and validated in 518 independent MAPs.ResultsPatients had age 62.0±18.7 Y, LVEF 28.0±8.3%. Fig. A shows final deep neural network (DNN) architecture comprising 3 convolutional and 2 recurrent neural layers. Training was performed using k-cross validation (CV) with k = 7. Fig. B shows training accuracy of the DNN at &gt;99%. In several independent validation sets, DNN predicted SCA with accuracies up to 78%.ConclusionsWe present the technical development of deep neural networks for ventricular action potentials, which predicted SCA at 2-3 year follow-up. Future studies should determine if these results can be extended by alternative learning models and by combining additional electrophysiological features.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/circ.140.suppl_1.14675</identifier><language>eng</language><publisher>by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><ispartof>Circulation (New York, N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A14675-A14675</ispartof><rights>2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Selvalingam, Anojan</creatorcontrib><creatorcontrib>Alhusseini, Mahmood</creatorcontrib><creatorcontrib>Rogers, Albert J</creatorcontrib><creatorcontrib>Krummen, David E</creatorcontrib><creatorcontrib>Abuzaid, Firas M</creatorcontrib><creatorcontrib>Zaman, Junaid A</creatorcontrib><creatorcontrib>Baykaner, Tina</creatorcontrib><creatorcontrib>Clopton, Paul L</creatorcontrib><creatorcontrib>Bailis, Peter</creatorcontrib><creatorcontrib>Zaharia, Matei</creatorcontrib><creatorcontrib>Narayan, Sanjiv M</creatorcontrib><title>Abstract 14675: Developing Convolutional Neural Networks for Deep Learning of Ventricular Action Potentials to Predict Risk for Ventricular Arrhythmias</title><title>Circulation (New York, N.Y.)</title><description>BackgroundIt is unclear if machine learning can be trained to recognize electrophysiological signal features which represent pathological remodeling in patients with coronary disease (CAD) and left ventricular (LV) dysfunction at risk for sudden cardiac arrest (SCA).ObjectiveDevelop and optimize alternative convolutional neural network (CNN) models to learn the shape of ventricular monophasic action potentials (MAPs) and predict SCA risk.MethodsIn 26 patients with CAD and LV ejection fraction ≤ 40%, MAP voltage time series (fig. A) were recorded at 1 kHz in right (RV) and left (LV) ventricles at EP study. CNNs were iteratively developed in keras (Python) and trained to labels of ICD therapy (0/1) at 752+493 days. The network was trained on 3062 MAPs and validated in 518 independent MAPs.ResultsPatients had age 62.0±18.7 Y, LVEF 28.0±8.3%. Fig. A shows final deep neural network (DNN) architecture comprising 3 convolutional and 2 recurrent neural layers. Training was performed using k-cross validation (CV) with k = 7. Fig. B shows training accuracy of the DNN at &gt;99%. In several independent validation sets, DNN predicted SCA with accuracies up to 78%.ConclusionsWe present the technical development of deep neural networks for ventricular action potentials, which predicted SCA at 2-3 year follow-up. Future studies should determine if these results can be extended by alternative learning models and by combining additional electrophysiological features.</description><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqdj01KxEAQhRtRMP5cQeoCiV35Je6GUXExyCDiNrSxYtq06VDdmeBJvK49gxu3LopXVbyviifEFcoEscTrVnObYC4TN0-TaTD0ZVUciQiLNI_zIquPRSSlrOMqS9NTcebcRxjLrCoi8b16dZ5V6-FA3cAt7cjYSY_vsLbjzprZazsqA48080H8Ynlw0FkOZppgQ4rHvd928EKjZ93ORjGs2j0JW-vDUivjwFvYMr3p8O1Ju-Fw4g_B3H_5_lMrdyFOuoDQ5a-ei_z-7nn9EC_WeGI3mHkhbnpSxvdNiCMziVWcSqwRQ8UyDXGyf2I_OARqIw</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Selvalingam, Anojan</creator><creator>Alhusseini, Mahmood</creator><creator>Rogers, Albert J</creator><creator>Krummen, David E</creator><creator>Abuzaid, Firas M</creator><creator>Zaman, Junaid A</creator><creator>Baykaner, Tina</creator><creator>Clopton, Paul L</creator><creator>Bailis, Peter</creator><creator>Zaharia, Matei</creator><creator>Narayan, Sanjiv M</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><scope/></search><sort><creationdate>20191119</creationdate><title>Abstract 14675: Developing Convolutional Neural Networks for Deep Learning of Ventricular Action Potentials to Predict Risk for Ventricular Arrhythmias</title><author>Selvalingam, Anojan ; Alhusseini, Mahmood ; Rogers, Albert J ; Krummen, David E ; Abuzaid, Firas M ; Zaman, Junaid A ; Baykaner, Tina ; Clopton, Paul L ; Bailis, Peter ; Zaharia, Matei ; Narayan, Sanjiv M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wolterskluwer_health_00003017-201911191-026753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Selvalingam, Anojan</creatorcontrib><creatorcontrib>Alhusseini, Mahmood</creatorcontrib><creatorcontrib>Rogers, Albert J</creatorcontrib><creatorcontrib>Krummen, David E</creatorcontrib><creatorcontrib>Abuzaid, Firas M</creatorcontrib><creatorcontrib>Zaman, Junaid A</creatorcontrib><creatorcontrib>Baykaner, Tina</creatorcontrib><creatorcontrib>Clopton, Paul L</creatorcontrib><creatorcontrib>Bailis, Peter</creatorcontrib><creatorcontrib>Zaharia, Matei</creatorcontrib><creatorcontrib>Narayan, Sanjiv M</creatorcontrib><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvalingam, Anojan</au><au>Alhusseini, Mahmood</au><au>Rogers, Albert J</au><au>Krummen, David E</au><au>Abuzaid, Firas M</au><au>Zaman, Junaid A</au><au>Baykaner, Tina</au><au>Clopton, Paul L</au><au>Bailis, Peter</au><au>Zaharia, Matei</au><au>Narayan, Sanjiv M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstract 14675: Developing Convolutional Neural Networks for Deep Learning of Ventricular Action Potentials to Predict Risk for Ventricular Arrhythmias</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><date>2019-11-19</date><risdate>2019</risdate><volume>140</volume><issue>Suppl_1 Suppl 1</issue><spage>A14675</spage><epage>A14675</epage><pages>A14675-A14675</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>BackgroundIt is unclear if machine learning can be trained to recognize electrophysiological signal features which represent pathological remodeling in patients with coronary disease (CAD) and left ventricular (LV) dysfunction at risk for sudden cardiac arrest (SCA).ObjectiveDevelop and optimize alternative convolutional neural network (CNN) models to learn the shape of ventricular monophasic action potentials (MAPs) and predict SCA risk.MethodsIn 26 patients with CAD and LV ejection fraction ≤ 40%, MAP voltage time series (fig. A) were recorded at 1 kHz in right (RV) and left (LV) ventricles at EP study. CNNs were iteratively developed in keras (Python) and trained to labels of ICD therapy (0/1) at 752+493 days. The network was trained on 3062 MAPs and validated in 518 independent MAPs.ResultsPatients had age 62.0±18.7 Y, LVEF 28.0±8.3%. Fig. A shows final deep neural network (DNN) architecture comprising 3 convolutional and 2 recurrent neural layers. Training was performed using k-cross validation (CV) with k = 7. Fig. B shows training accuracy of the DNN at &gt;99%. In several independent validation sets, DNN predicted SCA with accuracies up to 78%.ConclusionsWe present the technical development of deep neural networks for ventricular action potentials, which predicted SCA at 2-3 year follow-up. Future studies should determine if these results can be extended by alternative learning models and by combining additional electrophysiological features.</abstract><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><doi>10.1161/circ.140.suppl_1.14675</doi></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2019-11, Vol.140 (Suppl_1 Suppl 1), p.A14675-A14675
issn 0009-7322
1524-4539
language eng
recordid cdi_wolterskluwer_health_00003017-201911191-02675
source EZB Electronic Journals Library
title Abstract 14675: Developing Convolutional Neural Networks for Deep Learning of Ventricular Action Potentials to Predict Risk for Ventricular Arrhythmias
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wolterskluwer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstract%2014675:%20Developing%20Convolutional%20Neural%20Networks%20for%20Deep%20Learning%20of%20Ventricular%20Action%20Potentials%20to%20Predict%20Risk%20for%20Ventricular%20Arrhythmias&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Selvalingam,%20Anojan&rft.date=2019-11-19&rft.volume=140&rft.issue=Suppl_1%20Suppl%201&rft.spage=A14675&rft.epage=A14675&rft.pages=A14675-A14675&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/circ.140.suppl_1.14675&rft_dat=%3Cwolterskluwer%3E00003017-201911191-02675%3C/wolterskluwer%3E%3Cgrp_id%3Ecdi_FETCH-wolterskluwer_health_00003017-201911191-026753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true