Loading…

Linear response for random dynamical systems

We study for the first time linear response for random compositions of maps, chosen independently according to a distribution P. We are interested in the following question: how does an absolutely continuous stationary measure (acsm) of a random system change when P changes smoothly to Pε? For a wid...

Full description

Saved in:
Bibliographic Details
Main Authors: Wael Bahsoun, Marks Ruziboev, Benoit Saussol
Format: Default Article
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/2134/11710419.v1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study for the first time linear response for random compositions of maps, chosen independently according to a distribution P. We are interested in the following question: how does an absolutely continuous stationary measure (acsm) of a random system change when P changes smoothly to Pε? For a wide class of one dimensional random maps, we prove differentiability of acsm with respect to ε; moreover, we obtain a linear response formula. Our results cover random maps whose transfer operator does not necessarily admit a spectral gap. We apply our results to iid compositions, with respect to various distributions Pε, of uniformly expanding circle maps, Gauss-R´enyi maps (random continued fractions) and Pomeau-Manneville maps. Our results yield an exact formula for the invariant density of random continued fractions; while for Pomeau-Manneville maps our results provide a precise relation between their linear response under certain random perturbations and their linear response under deterministic perturbations.