Loading…
Linear response for random dynamical systems
We study for the first time linear response for random compositions of maps, chosen independently according to a distribution P. We are interested in the following question: how does an absolutely continuous stationary measure (acsm) of a random system change when P changes smoothly to Pε? For a wid...
Saved in:
Main Authors: | , , |
---|---|
Format: | Default Article |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/2134/11710419.v1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study for the first time linear response for random compositions of maps, chosen independently according to a distribution P. We are interested in the following question: how does an absolutely continuous stationary measure (acsm) of a random system change when P changes smoothly to Pε? For a wide class of one dimensional random maps, we prove differentiability of acsm with respect to ε; moreover, we obtain a linear response formula. Our results cover random maps whose transfer operator does not necessarily admit a spectral gap. We apply our results to iid compositions, with respect to various distributions Pε, of uniformly expanding circle maps, Gauss-R´enyi maps (random continued fractions) and Pomeau-Manneville maps. Our results yield an exact formula for the invariant density of random continued fractions; while for Pomeau-Manneville maps our results provide a precise relation between their linear response under certain random perturbations and their linear response under deterministic perturbations. |
---|