Loading…
Supplementary Information Files for 'Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species.'
Supplementary Information Files for 'Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species.'Abstract:The efficient production of acetate from HCO3− is demonstrat...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Data Data |
Published: |
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.17028/rd.lboro.11798829.v1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supplementary Information Files for 'Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species.'Abstract:The efficient production of acetate from HCO3− is demonstrated in a photo-assisted microbial electrosynthesis system (MES) incorporating a WO3/MoO3/g-C3N4 heterojunction photo-assisted biocathode supporting Serratia marcescens Q1 electrotroph. The WO3/MoO3/g-C3N4 structured electrode consisting of a layer of g-C3N4 coated on graphite felt decorated with W/Mo oxides nanoparticles exhibited stable photocurrents, 4.8 times higher than the g-C3N4 electrode and acetate production of 3.12 ± 0.20 mM/d with a CEacetate of 73 ± 4 % and current of 2.5 ± 0.3 A/m2. Photo-induced electrons on the conduction bands of WO3/MoO3/g-C3N4 favoured hydrogen evolution, which was metabolized by S. marcescens with HCO3− to acetate, while the holes were refilled by the electrons travelling from the anode. Such mechanism reduced the interfacial resistances creating a supplementary driving force leading to higher acetate production. The biocompatible components of WO3/MoO3/g-C3N4 synergistically couple light-harvesting and further catalyze S. marcescens to acetate from HCO3−, providing a feasible strategy for achieving sustainable high rates of acetate production. |
---|