Loading…
Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties
Poly(chloroprene) is a synthetic crystallizable polymer used in several applications, including rubber gloves. The film formation of poly(chloroprene) latex offers opportunities to define structures at length scales between the molecular and macroscopic, thereby adjusting the elastomer’s mechanical...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Default Article |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/2134/38329 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1818167638895886336 |
---|---|
author | Philip G. Richardson Ignacio Martin-Fabiani Patrick Shaw Eman Alsaffar Emilie Velasquez Paul Gardner Peter Shaw James M. Adams Joseph L. Keddie |
author_facet | Philip G. Richardson Ignacio Martin-Fabiani Patrick Shaw Eman Alsaffar Emilie Velasquez Paul Gardner Peter Shaw James M. Adams Joseph L. Keddie |
author_sort | Philip G. Richardson (6416999) |
collection | Figshare |
description | Poly(chloroprene) is a synthetic crystallizable polymer used in several applications, including rubber gloves. The film formation of poly(chloroprene) latex offers opportunities to define structures at length scales between the molecular and macroscopic, thereby adjusting the elastomer’s mechanical properties. However, the connections between processing and the resultant film properties are not fully understood. Here, we investigate the competition between the coalescence of latex particles to build cohesive strength and their crystallization to raise the elastic modulus. We demonstrate that when coalescence precedes crystallization, the elastomer has greater extensibility and a higher tensile strength compared to when crystallization occurs during coalescence. The mechanical properties of poly(chloroprene) were tuned by blending two colloids with differing gel contents and crystallizabilities. Heating above poly(chloroprene)’s melting temperature allows increased particle interdiffusion and builds cohesion, prior to recrystallization. We provide evidence from in situ wide-angle X-ray scattering for the strain-induced crystallization of as-cast films from particle blends. |
format | Default Article |
id | rr-article-9237185 |
institution | Loughborough University |
publishDate | 2019 |
record_format | Figshare |
spelling | rr-article-92371852019-07-08T00:00:00Z Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties Philip G. Richardson (6416999) Ignacio Martin-Fabiani (4600102) Patrick Shaw (2904647) Eman Alsaffar (7011275) Emilie Velasquez (1994848) Paul Gardner (4519417) Peter Shaw (65259) James M. Adams (7011278) Joseph L. Keddie (1388100) Materials engineering not elsewhere classified untagged Materials Engineering not elsewhere classified Poly(chloroprene) is a synthetic crystallizable polymer used in several applications, including rubber gloves. The film formation of poly(chloroprene) latex offers opportunities to define structures at length scales between the molecular and macroscopic, thereby adjusting the elastomer’s mechanical properties. However, the connections between processing and the resultant film properties are not fully understood. Here, we investigate the competition between the coalescence of latex particles to build cohesive strength and their crystallization to raise the elastic modulus. We demonstrate that when coalescence precedes crystallization, the elastomer has greater extensibility and a higher tensile strength compared to when crystallization occurs during coalescence. The mechanical properties of poly(chloroprene) were tuned by blending two colloids with differing gel contents and crystallizabilities. Heating above poly(chloroprene)’s melting temperature allows increased particle interdiffusion and builds cohesion, prior to recrystallization. We provide evidence from in situ wide-angle X-ray scattering for the strain-induced crystallization of as-cast films from particle blends. 2019-07-08T00:00:00Z Text Journal contribution 2134/38329 https://figshare.com/articles/journal_contribution/Competition_between_crystallization_and_coalescence_during_the_film_formation_of_poly_chloroprene_latex_and_effects_on_mechanical_properties/9237185 CC BY-NC-ND 4.0 |
spellingShingle | Materials engineering not elsewhere classified untagged Materials Engineering not elsewhere classified Philip G. Richardson Ignacio Martin-Fabiani Patrick Shaw Eman Alsaffar Emilie Velasquez Paul Gardner Peter Shaw James M. Adams Joseph L. Keddie Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
title | Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
title_full | Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
title_fullStr | Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
title_full_unstemmed | Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
title_short | Competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
title_sort | competition between crystallization and coalescence during the film formation of poly(chloroprene) latex and effects on mechanical properties |
topic | Materials engineering not elsewhere classified untagged Materials Engineering not elsewhere classified |
url | https://hdl.handle.net/2134/38329 |