Loading…
Hamiltonian operators of Dubrovin-Novikov type in 2D
First order Hamiltonian operators of differential-geometric type were introduced by Dubrovin and Novikov in 1983, and thoroughly investigated by Mokhov. In 2D, they are generated by a pair of compatible flat metrics g and ~g which satisfy a set of additional constraints coming from the skew-symmetry...
Saved in:
Main Authors: | , , |
---|---|
Format: | Default Article |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/2134/20233 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First order Hamiltonian operators of differential-geometric type were introduced by Dubrovin and Novikov in 1983, and thoroughly investigated by Mokhov. In 2D, they are generated by a pair of compatible flat metrics g and ~g which satisfy a set of additional constraints coming from the skew-symmetry condition and the Jacobi identity. We demonstrate that these constraints are equivalent to the requirement that ~g is a linear Killing tensor of g with zero Nijenhuis torsion. This allowed us to obtain a complete classification of n-component operators with n≤4 (for n = 1; 2 this was done before). For 2D operators the Darboux theorem does not hold: the operator may not be reducible to constant coefficient form. All interesting (non-constant) examples correspond to the case when the flat pencil g; ~g is not semisimple, that is, the affinor ~gg⁻ⁱ has non-trivial Jordan block structure. In the case of a direct sum of Jordan blocks with distinct eigenvalues we obtain a complete classification of Hamiltonian operators for any number of components n, revealing a remarkable correspondence with the class of trivial Frobenius manifolds modelled on H*(CPn⁻ⁱ). |
---|