Loading…

Time and frequency domain algorithms for speech coding

The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulation...

Full description

Saved in:
Bibliographic Details
Main Author: Francis S.C. Yeoh
Format: Default Thesis
Published: 1983
Subjects:
Online Access:https://hdl.handle.net/2134/14730
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1818173485044727808
author Francis S.C. Yeoh
author_facet Francis S.C. Yeoh
author_sort Francis S.C. Yeoh (7201616)
collection Figshare
description The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF).
format Default
Thesis
id rr-article-9524696
institution Loughborough University
publishDate 1983
record_format Figshare
spelling rr-article-95246961983-01-01T00:00:00Z Time and frequency domain algorithms for speech coding Francis S.C. Yeoh (7201616) Mechanical engineering not elsewhere classified untagged Mechanical Engineering not elsewhere classified The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF). 1983-01-01T00:00:00Z Text Thesis 2134/14730 https://figshare.com/articles/thesis/Time_and_frequency_domain_algorithms_for_speech_coding/9524696 CC BY-NC-ND 4.0
spellingShingle Mechanical engineering not elsewhere classified
untagged
Mechanical Engineering not elsewhere classified
Francis S.C. Yeoh
Time and frequency domain algorithms for speech coding
title Time and frequency domain algorithms for speech coding
title_full Time and frequency domain algorithms for speech coding
title_fullStr Time and frequency domain algorithms for speech coding
title_full_unstemmed Time and frequency domain algorithms for speech coding
title_short Time and frequency domain algorithms for speech coding
title_sort time and frequency domain algorithms for speech coding
topic Mechanical engineering not elsewhere classified
untagged
Mechanical Engineering not elsewhere classified
url https://hdl.handle.net/2134/14730