Loading…

Design, fabrication and performance analysis of vacuum glazing units fabricated with low and high temperature hermetic glass edge sealing materials

Vacuum glazing is a vital development in the move to more energy efficient buildings. In vacuum glazing, an evacuated cavity supresses gaseous conduction and convection to provide high thermal resistance. A high vacuum pressure (less than 0.1 Pa) is required and must be maintained by a hermetic seal...

Full description

Saved in:
Bibliographic Details
Main Author: Saim Memon
Format: Default Thesis
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/2134/14562
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vacuum glazing is a vital development in the move to more energy efficient buildings. In vacuum glazing, an evacuated cavity supresses gaseous conduction and convection to provide high thermal resistance. A high vacuum pressure (less than 0.1 Pa) is required and must be maintained by a hermetic seal around the periphery, currently formed with either indium (i.e. low temperature sealing method) or solder glass (i.e. high temperature sealing method). This thesis reports the results of an experimental and theoretical investigation into the development of new low temperature (less than 200˚C) and novel high temperature (up to 450˚C) glass edge seals. A new low temperature composite edge seal was developed in which double and triple vacuum glazings each of dimensions 300x300mm were fabricated with measured vacuum pressures of 4.6x10-2Pa and 4.8x10-2Pa achieved respectively. A three dimensional finite element model of the fabricated design of composite edge sealed triple vacuum glazing was developed. [Continues.]