Loading…

Self-Regulation of Cu/Sn Ratio in the Synthesis of Cu2ZnSnS4 Films

There has been a tremendous recent surge of interest in copper zinc tin sulfide (Cu2ZnSnS4, CZTS) as a photovoltaic material, because its optical and electronic properties are well-suited for solar cells, and its elemental constituents are abundant in the earth’s crust. Here we have studied the form...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2015-04
Main Authors: Johnson, Melissa C, Wrasman, Cody, Zhang, Xin, Manno, Michael, Leighton, C, Aydil, Eray S
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There has been a tremendous recent surge of interest in copper zinc tin sulfide (Cu2ZnSnS4, CZTS) as a photovoltaic material, because its optical and electronic properties are well-suited for solar cells, and its elemental constituents are abundant in the earth’s crust. Here we have studied the formation mechanisms of CZTS films, and the factors that control the cation stoichiometry during ex situ sulfidation of precursor Cu–Zn–Sn alloy films in a closed isothermal system. We find that the Cu/Sn ratio in CZTS is self-regulating and approaches 2, regardless of the initial composition of the precursor films, provided that adequate Sn is available in the sulfidation system. If precursor films are initially tin rich, excess Sn evaporates in the form of SnS. If precursor films are initially Sn-deficient, the inclusion of solid Sn in the sulfidation ampule readily generates SnS vapor, which mitigates the films’ Sn deficiency to return the Cu/Sn ratio to 2. When sulfidized for sufficiently long times at sufficiently high temperatures (e.g., 600 °C, 8 h), films with similar Cu/Zn ratios exhibit similar phase compositions, such that if Cu/Zn >2, a Cu2SnS3 impurity phase is present in addition to CZTS, and if Cu/Zn < 2, a ZnS impurity phase occurs. To achieve phase-pure, void-free films, Sn-deficient precursor films with Cu/Zn in the desired range (typically close to, but slightly less than 2) can be sulfidized with excess Sn in a closed system, or a system that maintains a SnS vapor pressure over the film. Time-dependent sulfidation experiments were performed to elucidate the mechanism of this Sn self-regulation. During the formation of CZTS, almost all of the Sn is found to leave the film as SnS, later reincorporation of the Sn occurring through reactions between SnS vapor and CuS to form Cu2SnS3. The ZnS and Cu2SnS3 phases within the films then interdiffuse to form CZTS. Because Cu/Sn is 2 in both Cu2SnS3 and CZTS, the Cu/Sn ratio tends to 2 when sufficient Sn is included in the system to consume all Cu. This strategy is useful for avoiding Cu–S minority phases, provided the films are sulfidized to the point of equilibrium phase composition.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.5b00108