Loading…

Eu11Zn4Sn2As12: A Ferromagnetic Zintl Semiconductor with a Layered Structure Featuring Extended Zn4As6 Sheets and Ethane-like Sn2As6 Units

We report the synthesis, structure, and magnetic properties of a new Zintl phase and structure type, Eu11Zn4Sn2As12. The structure and composition of this phase have been established by single-crystal X-ray diffraction and electron microprobe analysis. Eu11Zn4Sn2As12 crystallizes in monoclinic space...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2018-10, Vol.30 (20), p.7067-7076
Main Authors: Devlin, Kasey P, Kazem, Nasrin, Zaikina, Julia V, Cooley, Joya A, Badger, Jackson R, Fettinger, James C, Taufour, Valentin, Kauzlarich, Susan M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the synthesis, structure, and magnetic properties of a new Zintl phase and structure type, Eu11Zn4Sn2As12. The structure and composition of this phase have been established by single-crystal X-ray diffraction and electron microprobe analysis. Eu11Zn4Sn2As12 crystallizes in monoclinic space group C2/c (No. 15) with the following lattice parameters: a = 7.5679(4) Å, b = 13.0883(6) Å, c = 31.305(2) Å, and β = 94.8444(7)° [R 1 = 0.0398; wR 2 = 0.0633 (all data)]. The anisotropic structural features staggered ethane-like [Sn2As6]12– units and infinite ∞ 2[Zn2As3]5– sheets extended in the a–b plane. Eu cations fill the space between these anionic motifs. Temperature-dependent magnetic properties and magnetoresistance of this Zintl phase have been studied, and the electronic structure and chemical bonding were elucidated using first-principles quantum chemical calculations (TB-LMTO-ASA). Quantum chemical calculations show that the ethane-like units can be considered as consisting of covalent single bonds; however, the ∞ 2[Zn2As3]5– sheets are best described with delocalized bonding and there is evidence of Eu–As interactions. Temperature-dependent magnetization and transport properties between 2 and 300 K show a ferromagnetic transition at 15 K, a band gap of 0.04 eV, and negative colossal magnetoresistance.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.8b02749