Loading…
Controlling Plasmon-Induced Photocatalytic Redox Reactions on WO3 Nanowire/AgNPs Substrates via Defect Engineering
Using surface plasmons as a catalyst for surface reactions has been of great interest in recent years. Local surface plasmon resonance excitation has been shown to accelerate the rate of chemical reactions due to the excitation of hot carriers and local temperature increase. Nanocomposites containin...
Saved in:
Published in: | Journal of physical chemistry. C 2020-11, Vol.124 (46), p.25351-25360 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using surface plasmons as a catalyst for surface reactions has been of great interest in recent years. Local surface plasmon resonance excitation has been shown to accelerate the rate of chemical reactions due to the excitation of hot carriers and local temperature increase. Nanocomposites containing both metal and semiconductor have also been used in the field in order to control the charge states in the metal and to allow catalytic activity and selectivity tuning. However, the specific mechanisms responsible for plasmon-driven photocatalysis are still not entirely understood, and the precise control of the catalytic reactions using external stimuli remains challenging. Here we report that the use of thermally annealed tungsten oxide WO3+x yields an effective substrate for driving catalytic redox reactions when decorated with silver nanoparticles. We show that the rate of the oxidation reaction of p-aminothiophenol (PATP) can be controlled by introducing defects into the semiconductor structure via heat treatment. We suggest that defect introduction allows for more efficient charge generation and transfer and may be used for catalysis of redox reaction for industrial processes. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.0c07788 |