Loading…
Unlocking the Potential of Oxygen-Deficient Copper-Doped Co3O4 Nanocrystals Confined in Carbon as an Advanced Electrode for Flexible Solid-State Supercapacitors
Battery-type materials for supercapacitors have attracted increasing research interest owing to their high energy density. However, their poor electrode kinetics severely limit the utilization of redox-active sites on the electrode surface, resulting in subpar electrochemical performance. Herein, we...
Saved in:
Published in: | ACS energy letters 2021-09, Vol.6 (9), p.3011-3019 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | eng ; jpn |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Battery-type materials for supercapacitors have attracted increasing research interest owing to their high energy density. However, their poor electrode kinetics severely limit the utilization of redox-active sites on the electrode surface, resulting in subpar electrochemical performance. Herein, we incorporate both Cu dopants and O vacancies into Co3O4 nanocrystals confined in a carbon matrix (Ov-Cu-Co3O4@C) which are assembled into nanowires. This heterostructured architecture with multifunctional nanogeometries provides a high intercomponent synergy, enabling high accessibility to active species. Moreover, the Cu dopants and O vacancies in Ov-Cu-Co3O4@C synergistically manipulate the electronic states and provide more accessible active sites, resulting in enhanced electrical conductivity and enriched redox chemistry. The Ov-Cu-Co3O4@C achieves a significantly improved specific capacity and rate performance, exceeding those of Co3O4@C. The asymmetric supercapacitors with Ov-Cu-Co3O4@C deliver a high energy density of 64.1 W h kg–1 at 800 W kg–1, exhibiting good flexibility without significant performance degradation under different bending states. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.1c01373 |