Loading…
29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics
Polymer derived silicon oxycarbide ceramics (SiOC-PDCs) with widely different carbon contents have been synthesized, and their structures have been studied at different length scales using high-resolution 13C and 29Si magic-angle-spinning (MAS) NMR spectroscopic techniques. The data suggest that the...
Saved in:
Published in: | Chemistry of materials 2010-12, Vol.22 (23), p.6221-6228 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer derived silicon oxycarbide ceramics (SiOC-PDCs) with widely different carbon contents have been synthesized, and their structures have been studied at different length scales using high-resolution 13C and 29Si magic-angle-spinning (MAS) NMR spectroscopic techniques. The data suggest that the structure of these PDCs consists of a continuous mass fractal backbone of corner-shared SiCxO4-x tetrahedral units with “voids” occupied by sp2-hybridized graphitic carbon. The oxygen-rich SiCxO4-x units are located at the interior of this backbone with a mass fractal dimension of ∼2.5 while the carbon-rich units display a slightly lower dimensionality and occupy the interface between the backbone and the free carbon nanodomains. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm1021432 |