Loading…

Représentations localement analytiques de GL 2 ( Q p ) \textbf {GL}_2(\mathbf {Q}_p) et ( φ , Γ ) (\varphi ,\Gamma ) -modules

We extend the pp-adic local Langlands correspondence for GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p) to a correspondence Δ↦Π(Δ)\Delta \mapsto \Pi (\Delta ) between (φ,Γ)(\varphi ,\Gamma )-modules of rank 22 over the Robba ring and certain locally analytic representations of GL2(Qp)\textbf {GL}_2(\mathbf {Q...

Full description

Saved in:
Bibliographic Details
Published in:Representation theory 2016-07, Vol.20 (9), p.187-248
Main Author: Colmez, Pierre
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We extend the pp-adic local Langlands correspondence for GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p) to a correspondence Δ↦Π(Δ)\Delta \mapsto \Pi (\Delta ) between (φ,Γ)(\varphi ,\Gamma )-modules of rank 22 over the Robba ring and certain locally analytic representations of GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p). If Δ\Delta is isocline, one uses the existing correspondence; in the remaining cases one builds a GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p)-module from parabolically induced locally analytic representations and their duals. This construction extends to GL2(F)\textbf {GL}_2(F) if FF is a finite extension of Qp\mathbf {Q}_p, which suggests that the same should be true for the correspondence Δ↦Π(Δ)\Delta \mapsto \Pi (\Delta ). Résumé. Nous étendons la correspondance de Langlands locale pp-adique pour GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p) en une correspondance Δ↦Π(Δ)\Delta \mapsto \Pi (\Delta ) entre les (φ,Γ)(\varphi ,\Gamma )-modules de rang 2 sur l’anneau de Robba et certaines représentations localement analytiques de GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p). Si Δ\Delta est isocline, on se ramène à la correspondance déjà établie ; dans le cas contraire, on construit un GL2(Qp)\textbf {GL}_2(\mathbf {Q}_p)-module formé d’induites paraboliques localement analytiques et de leurs duales. Cette construction s’étend à GL2(F)\textbf {GL}_2(F), si FF est une extension finie de Qp\mathbf {Q}_p, ce qui suggère qu’il en est de même de la correspondance Δ↦Π(Δ)\Delta \mapsto \Pi (\Delta ).
ISSN:1088-4165
DOI:10.1090/ert/484