Loading…
Invariant metrics on negatively pinched complete K\"ahler manifolds
We prove that a complete Kähler manifold with holomorphic curvature bounded between two negative constants admits a unique complete Kähler-Einstein metric. We also show this metric and the Kobayashi-Royden metric are both uniformly equivalent to the background Kähler metric. Furthermore, all three m...
Saved in:
Published in: | Journal of the American Mathematical Society 2020-01, Vol.33 (1), p.103 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that a complete Kähler manifold with holomorphic curvature bounded between two negative constants admits a unique complete Kähler-Einstein metric. We also show this metric and the Kobayashi-Royden metric are both uniformly equivalent to the background Kähler metric. Furthermore, all three metrics are shown to be uniformly equivalent to the Berg- man metric, if the complete Kähler manifold is simply-connected, with the sectional curvature bounded between two negative constants. In particular, we confirm two conjectures of R. E. Greene and H. Wu posted in 1979. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/933 |