Loading…
A note on higher-order Bernoulli polynomials
Let P n = { p ( x ) ∈ Q [ x ] | deg p ( x ) ≤ n } be the ( n + 1 ) -dimensional vector space over Q . From the property of the basis B 0 ( r ) , B 1 ( r ) , … , B n ( r ) for the space P n , we derive some interesting identities of higher-order Bernoulli polynomials.
Saved in:
Published in: | Journal of inequalities and applications 2013-03, Vol.2013 (1), p.111-111, Article 111 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
P
n
=
{
p
(
x
)
∈
Q
[
x
]
|
deg
p
(
x
)
≤
n
}
be the
(
n
+
1
)
-dimensional vector space over
Q
. From the property of the basis
B
0
(
r
)
,
B
1
(
r
)
,
…
,
B
n
(
r
)
for the space
P
n
, we derive some interesting identities of higher-order Bernoulli polynomials. |
---|---|
ISSN: | 1029-242X 1029-242X |
DOI: | 10.1186/1029-242X-2013-111 |