Loading…
The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter
Given α ∈ [ 0 , 1 ] , let g α ( z ) : = z / ( 1 − α z ) 2 , z ∈ D : = { z ∈ C : | z | < 1 } . An analytic standardly normalized function f in D is called close-to-convex with respect to g α if there exists δ ∈ ( − π / 2 , π / 2 ) such that Re { e i δ z f ′ ( z ) g α ( z ) } > 0 , z ∈ D . For t...
Saved in:
Published in: | Journal of inequalities and applications 2014-02, Vol.2014 (1), p.1-16, Article 65 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given
α
∈
[
0
,
1
]
, let
g
α
(
z
)
:
=
z
/
(
1
−
α
z
)
2
,
z
∈
D
:
=
{
z
∈
C
:
|
z
|
<
1
}
. An analytic standardly normalized function
f
in
D
is called
close-to-convex with respect to
g
α
if there exists
δ
∈
(
−
π
/
2
,
π
/
2
)
such that
Re
{
e
i
δ
z
f
′
(
z
)
g
α
(
z
)
}
>
0
,
z
∈
D
.
For the class
C
(
g
α
)
of all close-to-convex functions with respect to
g
α
, the Fekete-Szegö problem is studied.
MSC:
30C45. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/1029-242X-2014-65 |