Loading…
Existence of positive solutions of advanced differential equations
In this paper, we study the advanced differential equations [ r ( t ) | x ′ ( t ) | α − 1 x ′ ( t ) ] ′ + ∑ i = 1 n p i ( t ) | x ( t + τ i ( t ) ) | α − 1 x ( t + τ i ( t ) ) = 0 and [ r ( t ) ( y ( t ) − P ( t ) y ( t − τ ) ) ′ ] ′ + ∑ i = 1 n p i ( t ) f ( y ( t + σ ) ) = 0 . By using the general...
Saved in:
Published in: | Advances in difference equations 2013-06, Vol.2013 (1), p.158-158, Article 158 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study the advanced differential equations
[
r
(
t
)
|
x
′
(
t
)
|
α
−
1
x
′
(
t
)
]
′
+
∑
i
=
1
n
p
i
(
t
)
|
x
(
t
+
τ
i
(
t
)
)
|
α
−
1
x
(
t
+
τ
i
(
t
)
)
=
0
and
[
r
(
t
)
(
y
(
t
)
−
P
(
t
)
y
(
t
−
τ
)
)
′
]
′
+
∑
i
=
1
n
p
i
(
t
)
f
(
y
(
t
+
σ
)
)
=
0
.
By using the generalized Riccati transformation and the Schauder-Tyichonoff theorem, we establish the conditions for the existence of positive solutions of the above equations.
MSC:
34K11, 39A10. |
---|---|
ISSN: | 1687-1847 1687-1847 |
DOI: | 10.1186/1687-1847-2013-158 |