Loading…
The Vibrations of a Particle about a Position of Equilibrium—Part III
In the two parts of this investigation previously published it has been shown that the solution in terms of elliptic functions represents the motion of the particular dynamical system under consideration throughout the whole range of values of s and g for which a real solution exists, except for tho...
Saved in:
Published in: | Proceedings of the Edinburgh Mathematical Society 1922-02, Vol.41, p.128-140 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the two parts of this investigation previously published it has been shown that the solution in terms of elliptic functions represents the motion of the particular dynamical system under consideration throughout the whole range of values of s and g for which a real solution exists, except for those values for which s = 2g and k = 1, but that, on the other hand, the series solution is convergent and represents the motion only so long as
for values of s and g for which the sign of this inequality is reversed the trigonometric series representing the solution are divergent. It is of importance to investigate what discontinuities, if any, of the system correspond to values of s and g which lie on the boundary of the region of convergence; the present part is concerned primarily with showing that under such circumstances no discontinuity of the system exists, thus confirming the suggestions made in Part I., § 12. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091500077920 |