Loading…

A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology

The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed $\unicode[STIX]{x1D707}(I)$ -rheology. In Newtonian fluids, molecular diffusion brings about a self...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2018-07, Vol.847, p.365-385
Main Authors: John Soundar Jerome, J., Di Pierro, B.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed $\unicode[STIX]{x1D707}(I)$ -rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time $t$ as $\sqrt{\unicode[STIX]{x1D708}t}$ , where $\unicode[STIX]{x1D708}$ is the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as $\sqrt{\unicode[STIX]{x1D708}_{g}t}$ analogous to a Newtonian fluid where $\unicode[STIX]{x1D708}_{g}$ is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular medium, such as grain diameter $d$ , density $\unicode[STIX]{x1D70C}$ and friction coefficients, but also on the applied pressure $p_{w}$ at the moving wall and the solid fraction $\unicode[STIX]{x1D719}$ (constant). In addition, the $\unicode[STIX]{x1D707}(I)$ -rheology indicates that this growth continues until reaching the steady-state boundary layer thickness $\unicode[STIX]{x1D6FF}_{s}=\unicode[STIX]{x1D6FD}_{w}(p_{w}/\unicode[STIX]{x1D719}\unicode[STIX]{x1D70C}g)$ , independent of the grain size, at approximately a finite time proportional to $\unicode[STIX]{x1D6FD}_{w}^{2}(p_{w}/\unicode[STIX]{x1D70C}gd)^{3/2}\sqrt{d/g}$ , where $g$ is the acceleration due to gravity and $\unicode[STIX]{x1D6FD}_{w}=(\unicode[STIX]{x1D70F}_{w}-\unicode[STIX]{x1D70F}_{s})/\unicode[STIX]{x1D70F}_{s}$ is the relative surplus of the steady-state wall shear stress $\unicode[STIX]{x1D70F}_{w}$ over the critical wall shear stress $\unicode[STIX]{x1D70F}_{s}$ (yield stress) that is needed to bring the granular medium into motion. For the case of Stokes’ first problem when the wall shear stress $\unicode[STIX]{x1D70F}_{w}$ is imposed externally, the $\unicode[STIX]{x1D707}(I)$ -rheology suggests that the wall velocity simply grows as $\sqrt{t}$ before saturating to a constant value whereby the internal resistance of the granular medium balances out the applied stresses. In contrast, for the case with an externally imposed wall speed $u_{w}$ , the dense granular medium near the wall initial
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.250