Loading…
A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology
The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed $\unicode[STIX]{x1D707}(I)$ -rheology. In Newtonian fluids, molecular diffusion brings about a self...
Saved in:
Published in: | Journal of fluid mechanics 2018-07, Vol.847, p.365-385 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 385 |
container_issue | |
container_start_page | 365 |
container_title | Journal of fluid mechanics |
container_volume | 847 |
creator | John Soundar Jerome, J. Di Pierro, B. |
description | The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed
$\unicode[STIX]{x1D707}(I)$
-rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time
$t$
as
$\sqrt{\unicode[STIX]{x1D708}t}$
, where
$\unicode[STIX]{x1D708}$
is the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as
$\sqrt{\unicode[STIX]{x1D708}_{g}t}$
analogous to a Newtonian fluid where
$\unicode[STIX]{x1D708}_{g}$
is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular medium, such as grain diameter
$d$
, density
$\unicode[STIX]{x1D70C}$
and friction coefficients, but also on the applied pressure
$p_{w}$
at the moving wall and the solid fraction
$\unicode[STIX]{x1D719}$
(constant). In addition, the
$\unicode[STIX]{x1D707}(I)$
-rheology indicates that this growth continues until reaching the steady-state boundary layer thickness
$\unicode[STIX]{x1D6FF}_{s}=\unicode[STIX]{x1D6FD}_{w}(p_{w}/\unicode[STIX]{x1D719}\unicode[STIX]{x1D70C}g)$
, independent of the grain size, at approximately a finite time proportional to
$\unicode[STIX]{x1D6FD}_{w}^{2}(p_{w}/\unicode[STIX]{x1D70C}gd)^{3/2}\sqrt{d/g}$
, where
$g$
is the acceleration due to gravity and
$\unicode[STIX]{x1D6FD}_{w}=(\unicode[STIX]{x1D70F}_{w}-\unicode[STIX]{x1D70F}_{s})/\unicode[STIX]{x1D70F}_{s}$
is the relative surplus of the steady-state wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
over the critical wall shear stress
$\unicode[STIX]{x1D70F}_{s}$
(yield stress) that is needed to bring the granular medium into motion. For the case of Stokes’ first problem when the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
is imposed externally, the
$\unicode[STIX]{x1D707}(I)$
-rheology suggests that the wall velocity simply grows as
$\sqrt{t}$
before saturating to a constant value whereby the internal resistance of the granular medium balances out the applied stresses. In contrast, for the case with an externally imposed wall speed
$u_{w}$
, the dense granular medium near the wall initial |
doi_str_mv | 10.1017/jfm.2018.250 |
format | article |
fullrecord | <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_journals_10_1017_jfm_2018_250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_250</cupid><sourcerecordid>10_1017_jfm_2018_250</sourcerecordid><originalsourceid>FETCH-cambridge_journals_10_1017_jfm_2018_2503</originalsourceid><addsrcrecordid>eNqVz71OwzAUhmELgUQobFzAGTrAkHCO-2M6IiiiczsgAbLc5DR1SGxkJxIIIXEb3B5XQir1Bpi-4dU3PEKcE2aEpK6qTZNJpOtMTvBAJDSezlI1HU8ORYIoZUok8VicxFgh0ghnKhH5DTjfMngHy9a_cvz9_oG34Nc1N2AdFOwiQxmM62oToOHCGuiidSW0W4bhc-ds7gt-Wq4Wjy-f73SnUH1dLC6HkIYt-9qXH6fiaGPqyGf7HYjsfr66fUhz06yDLUrWle-C65sm1DuK7il6R9E9ZfTvwx-Q81Fq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology</title><source>Cambridge Journals Online</source><creator>John Soundar Jerome, J. ; Di Pierro, B.</creator><creatorcontrib>John Soundar Jerome, J. ; Di Pierro, B.</creatorcontrib><description>The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed
$\unicode[STIX]{x1D707}(I)$
-rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time
$t$
as
$\sqrt{\unicode[STIX]{x1D708}t}$
, where
$\unicode[STIX]{x1D708}$
is the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as
$\sqrt{\unicode[STIX]{x1D708}_{g}t}$
analogous to a Newtonian fluid where
$\unicode[STIX]{x1D708}_{g}$
is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular medium, such as grain diameter
$d$
, density
$\unicode[STIX]{x1D70C}$
and friction coefficients, but also on the applied pressure
$p_{w}$
at the moving wall and the solid fraction
$\unicode[STIX]{x1D719}$
(constant). In addition, the
$\unicode[STIX]{x1D707}(I)$
-rheology indicates that this growth continues until reaching the steady-state boundary layer thickness
$\unicode[STIX]{x1D6FF}_{s}=\unicode[STIX]{x1D6FD}_{w}(p_{w}/\unicode[STIX]{x1D719}\unicode[STIX]{x1D70C}g)$
, independent of the grain size, at approximately a finite time proportional to
$\unicode[STIX]{x1D6FD}_{w}^{2}(p_{w}/\unicode[STIX]{x1D70C}gd)^{3/2}\sqrt{d/g}$
, where
$g$
is the acceleration due to gravity and
$\unicode[STIX]{x1D6FD}_{w}=(\unicode[STIX]{x1D70F}_{w}-\unicode[STIX]{x1D70F}_{s})/\unicode[STIX]{x1D70F}_{s}$
is the relative surplus of the steady-state wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
over the critical wall shear stress
$\unicode[STIX]{x1D70F}_{s}$
(yield stress) that is needed to bring the granular medium into motion. For the case of Stokes’ first problem when the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
is imposed externally, the
$\unicode[STIX]{x1D707}(I)$
-rheology suggests that the wall velocity simply grows as
$\sqrt{t}$
before saturating to a constant value whereby the internal resistance of the granular medium balances out the applied stresses. In contrast, for the case with an externally imposed wall speed
$u_{w}$
, the dense granular medium near the wall initially maintains a shear stress very close to
$\unicode[STIX]{x1D70F}_{d}$
which is the maximum internal resistance via grain–grain contact friction within the context of the
$\unicode[STIX]{x1D707}(I)$
-rheology. Then the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
decreases as
$1/\sqrt{t}$
until ultimately saturating to a constant value so that it gives precisely the same steady-state solution as for the imposed shear-stress case. Thereby, the steady-state wall velocity, wall shear stress and the applied wall pressure are related as
$u_{w}\sim (g\unicode[STIX]{x1D6FF}_{s}^{2}/\unicode[STIX]{x1D708}_{g})f(\unicode[STIX]{x1D6FD}_{w})$
where
$f(\unicode[STIX]{x1D6FD}_{w})$
is either
$O(1)$
if
$\unicode[STIX]{x1D70F}_{w}\sim \unicode[STIX]{x1D70F}_{s}$
or logarithmically large as
$\unicode[STIX]{x1D70F}_{w}$
approaches
$\unicode[STIX]{x1D70F}_{d}$
.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.250</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>JFM Papers</subject><ispartof>Journal of fluid mechanics, 2018-07, Vol.847, p.365-385</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2148-9434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018002501/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>John Soundar Jerome, J.</creatorcontrib><creatorcontrib>Di Pierro, B.</creatorcontrib><title>A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed
$\unicode[STIX]{x1D707}(I)$
-rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time
$t$
as
$\sqrt{\unicode[STIX]{x1D708}t}$
, where
$\unicode[STIX]{x1D708}$
is the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as
$\sqrt{\unicode[STIX]{x1D708}_{g}t}$
analogous to a Newtonian fluid where
$\unicode[STIX]{x1D708}_{g}$
is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular medium, such as grain diameter
$d$
, density
$\unicode[STIX]{x1D70C}$
and friction coefficients, but also on the applied pressure
$p_{w}$
at the moving wall and the solid fraction
$\unicode[STIX]{x1D719}$
(constant). In addition, the
$\unicode[STIX]{x1D707}(I)$
-rheology indicates that this growth continues until reaching the steady-state boundary layer thickness
$\unicode[STIX]{x1D6FF}_{s}=\unicode[STIX]{x1D6FD}_{w}(p_{w}/\unicode[STIX]{x1D719}\unicode[STIX]{x1D70C}g)$
, independent of the grain size, at approximately a finite time proportional to
$\unicode[STIX]{x1D6FD}_{w}^{2}(p_{w}/\unicode[STIX]{x1D70C}gd)^{3/2}\sqrt{d/g}$
, where
$g$
is the acceleration due to gravity and
$\unicode[STIX]{x1D6FD}_{w}=(\unicode[STIX]{x1D70F}_{w}-\unicode[STIX]{x1D70F}_{s})/\unicode[STIX]{x1D70F}_{s}$
is the relative surplus of the steady-state wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
over the critical wall shear stress
$\unicode[STIX]{x1D70F}_{s}$
(yield stress) that is needed to bring the granular medium into motion. For the case of Stokes’ first problem when the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
is imposed externally, the
$\unicode[STIX]{x1D707}(I)$
-rheology suggests that the wall velocity simply grows as
$\sqrt{t}$
before saturating to a constant value whereby the internal resistance of the granular medium balances out the applied stresses. In contrast, for the case with an externally imposed wall speed
$u_{w}$
, the dense granular medium near the wall initially maintains a shear stress very close to
$\unicode[STIX]{x1D70F}_{d}$
which is the maximum internal resistance via grain–grain contact friction within the context of the
$\unicode[STIX]{x1D707}(I)$
-rheology. Then the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
decreases as
$1/\sqrt{t}$
until ultimately saturating to a constant value so that it gives precisely the same steady-state solution as for the imposed shear-stress case. Thereby, the steady-state wall velocity, wall shear stress and the applied wall pressure are related as
$u_{w}\sim (g\unicode[STIX]{x1D6FF}_{s}^{2}/\unicode[STIX]{x1D708}_{g})f(\unicode[STIX]{x1D6FD}_{w})$
where
$f(\unicode[STIX]{x1D6FD}_{w})$
is either
$O(1)$
if
$\unicode[STIX]{x1D70F}_{w}\sim \unicode[STIX]{x1D70F}_{s}$
or logarithmically large as
$\unicode[STIX]{x1D70F}_{w}$
approaches
$\unicode[STIX]{x1D70F}_{d}$
.</description><subject>JFM Papers</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVz71OwzAUhmELgUQobFzAGTrAkHCO-2M6IiiiczsgAbLc5DR1SGxkJxIIIXEb3B5XQir1Bpi-4dU3PEKcE2aEpK6qTZNJpOtMTvBAJDSezlI1HU8ORYIoZUok8VicxFgh0ghnKhH5DTjfMngHy9a_cvz9_oG34Nc1N2AdFOwiQxmM62oToOHCGuiidSW0W4bhc-ds7gt-Wq4Wjy-f73SnUH1dLC6HkIYt-9qXH6fiaGPqyGf7HYjsfr66fUhz06yDLUrWle-C65sm1DuK7il6R9E9ZfTvwx-Q81Fq</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>John Soundar Jerome, J.</creator><creator>Di Pierro, B.</creator><general>Cambridge University Press</general><scope/><orcidid>https://orcid.org/0000-0003-2148-9434</orcidid></search><sort><creationdate>20180725</creationdate><title>A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology</title><author>John Soundar Jerome, J. ; Di Pierro, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cambridge_journals_10_1017_jfm_2018_2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>JFM Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John Soundar Jerome, J.</creatorcontrib><creatorcontrib>Di Pierro, B.</creatorcontrib><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John Soundar Jerome, J.</au><au>Di Pierro, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>847</volume><spage>365</spage><epage>385</epage><pages>365-385</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed
$\unicode[STIX]{x1D707}(I)$
-rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time
$t$
as
$\sqrt{\unicode[STIX]{x1D708}t}$
, where
$\unicode[STIX]{x1D708}$
is the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as
$\sqrt{\unicode[STIX]{x1D708}_{g}t}$
analogous to a Newtonian fluid where
$\unicode[STIX]{x1D708}_{g}$
is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular medium, such as grain diameter
$d$
, density
$\unicode[STIX]{x1D70C}$
and friction coefficients, but also on the applied pressure
$p_{w}$
at the moving wall and the solid fraction
$\unicode[STIX]{x1D719}$
(constant). In addition, the
$\unicode[STIX]{x1D707}(I)$
-rheology indicates that this growth continues until reaching the steady-state boundary layer thickness
$\unicode[STIX]{x1D6FF}_{s}=\unicode[STIX]{x1D6FD}_{w}(p_{w}/\unicode[STIX]{x1D719}\unicode[STIX]{x1D70C}g)$
, independent of the grain size, at approximately a finite time proportional to
$\unicode[STIX]{x1D6FD}_{w}^{2}(p_{w}/\unicode[STIX]{x1D70C}gd)^{3/2}\sqrt{d/g}$
, where
$g$
is the acceleration due to gravity and
$\unicode[STIX]{x1D6FD}_{w}=(\unicode[STIX]{x1D70F}_{w}-\unicode[STIX]{x1D70F}_{s})/\unicode[STIX]{x1D70F}_{s}$
is the relative surplus of the steady-state wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
over the critical wall shear stress
$\unicode[STIX]{x1D70F}_{s}$
(yield stress) that is needed to bring the granular medium into motion. For the case of Stokes’ first problem when the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
is imposed externally, the
$\unicode[STIX]{x1D707}(I)$
-rheology suggests that the wall velocity simply grows as
$\sqrt{t}$
before saturating to a constant value whereby the internal resistance of the granular medium balances out the applied stresses. In contrast, for the case with an externally imposed wall speed
$u_{w}$
, the dense granular medium near the wall initially maintains a shear stress very close to
$\unicode[STIX]{x1D70F}_{d}$
which is the maximum internal resistance via grain–grain contact friction within the context of the
$\unicode[STIX]{x1D707}(I)$
-rheology. Then the wall shear stress
$\unicode[STIX]{x1D70F}_{w}$
decreases as
$1/\sqrt{t}$
until ultimately saturating to a constant value so that it gives precisely the same steady-state solution as for the imposed shear-stress case. Thereby, the steady-state wall velocity, wall shear stress and the applied wall pressure are related as
$u_{w}\sim (g\unicode[STIX]{x1D6FF}_{s}^{2}/\unicode[STIX]{x1D708}_{g})f(\unicode[STIX]{x1D6FD}_{w})$
where
$f(\unicode[STIX]{x1D6FD}_{w})$
is either
$O(1)$
if
$\unicode[STIX]{x1D70F}_{w}\sim \unicode[STIX]{x1D70F}_{s}$
or logarithmically large as
$\unicode[STIX]{x1D70F}_{w}$
approaches
$\unicode[STIX]{x1D70F}_{d}$
.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.250</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2148-9434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2018-07, Vol.847, p.365-385 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_cambridge_journals_10_1017_jfm_2018_250 |
source | Cambridge Journals Online |
subjects | JFM Papers |
title | A note on Stokes’ problem in dense granular media using the $\unicode[STIX]{x1D707}(I)$ -rheology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20Stokes%E2%80%99%20problem%20in%20dense%20granular%20media%20using%20the%20$%5Cunicode%5BSTIX%5D%7Bx1D707%7D(I)$%20-rheology&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=John%20Soundar%20Jerome,%20J.&rft.date=2018-07-25&rft.volume=847&rft.spage=365&rft.epage=385&rft.pages=365-385&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.250&rft_dat=%3Ccambridge%3E10_1017_jfm_2018_250%3C/cambridge%3E%3Cgrp_id%3Ecdi_FETCH-cambridge_journals_10_1017_jfm_2018_2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_250&rfr_iscdi=true |