Loading…
烤烟叶片镉含量高光谱预测模型的构建
为快速准确地获取烟草叶片镉含量,本研究模拟了4个镉污染水平,用美国ASD光谱仪获取每个污染水平的烟草叶片光谱反射率,并测定不同时期烟草叶片的镉含量,筛选出与镉含量相关性最好的敏感波段,并建立光谱参数,将光谱参数作为输入因子建立烟草叶片镉含量的BP神经网络模型。结果表明:随着镉含量增加,在可见光和近红外范围(400~910 nm)内反射率先降低后增加,在930~1 000 nm波段范围内,叶片反射率与烟叶中镉含量呈正相关,在1 000~2 500 nm波段范围内反射率先增加后降低。经筛选,比值植被指数(RVI)和归一化植被指数(NDVI)的光谱指数分别为RVI(520,710)和NDVI(530...
Saved in:
Published in: | 农业资源与环境学报 2021-07, Vol.38 (4), p.570-575 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | Chinese |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 为快速准确地获取烟草叶片镉含量,本研究模拟了4个镉污染水平,用美国ASD光谱仪获取每个污染水平的烟草叶片光谱反射率,并测定不同时期烟草叶片的镉含量,筛选出与镉含量相关性最好的敏感波段,并建立光谱参数,将光谱参数作为输入因子建立烟草叶片镉含量的BP神经网络模型。结果表明:随着镉含量增加,在可见光和近红外范围(400~910 nm)内反射率先降低后增加,在930~1 000 nm波段范围内,叶片反射率与烟叶中镉含量呈正相关,在1 000~2 500 nm波段范围内反射率先增加后降低。经筛选,比值植被指数(RVI)和归一化植被指数(NDVI)的光谱指数分别为RVI(520,710)和NDVI(530,710);BP神经网络模型的决定系数(R2)为0.681,均方根误差(RMSE)为8.001,并对模型进行检验,R2为0.801,RMSE为4.430。研究表明,BP神经网络模型对烟草叶片镉含量具有良好的预测效果。 |
---|---|
ISSN: | 2095-6819 2095-6819 |