Loading…
Localized Structures on Periodic Background Wave of (2+1)-Dimensional Boiti-Leon-Pempinelli System via an Object Reduction
In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon-Pempinelli system, which has the extensive physics background, and an abundance of ex...
Saved in:
Published in: | Communications in theoretical physics 2007, Vol.48 (5), p.811-814 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon-Pempinelli system, which has the extensive physics background, and an abundance of exact solutions is derived from some reduction equations. Based on the derived solutions, the localized structures under the periodic wave background are obtained. |
---|---|
ISSN: | 0253-6102 |