Loading…

Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves

Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results....

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2010 (4), p.653-658
Main Author: Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 658
container_issue 4
container_start_page 653
container_title Acta mathematica Sinica. English series
container_volume
creator Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU
description Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results.
format article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_33064638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33064638</cqvip_id><sourcerecordid>33064638</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_330646383</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGaCJe3uGPO0mxUGCVaBhIHGQnBVqo1hZbMOHtdfABnM4ZvgXygpCkfkyDePn7JAroGm2cu2McRSmmHipuPbMDFEc4mUm3vNXcOTACSsu0E8Y-Yew5XF0jlWKjsTPk88Ctn0tVczsCU0Z3kE32zd0OrQRTju9_3aLD5Vxmud_0X_SSuqtq1jyEVLwiBNOQkoT8hT6Sbz2m</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</creator><creatorcontrib>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</creatorcontrib><description>Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><language>eng</language><subject>amp ; 光合速率 ; 希尔伯特变换 ; 有界性</subject><ispartof>Acta mathematica Sinica. English series, 2010 (4), p.653-658</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</creatorcontrib><title>Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta Mathematica Sinica</addtitle><description>Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results.</description><subject>amp</subject><subject>光合速率</subject><subject>希尔伯特变换</subject><subject>有界性</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgjAYQOHGaCJe3uGPO0mxUGCVaBhIHGQnBVqo1hZbMOHtdfABnM4ZvgXygpCkfkyDePn7JAroGm2cu2McRSmmHipuPbMDFEc4mUm3vNXcOTACSsu0E8Y-Yew5XF0jlWKjsTPk88Ctn0tVczsCU0Z3kE32zd0OrQRTju9_3aLD5Vxmud_0X_SSuqtq1jyEVLwiBNOQkoT8hT6Sbz2m</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2010</creationdate><title>Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves</title><author>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_330646383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>amp</topic><topic>光合速率</topic><topic>希尔伯特变换</topic><topic>有界性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jie Cheng CHEN Da Shah FAN Xiang Rong ZHU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><addtitle>Acta Mathematica Sinica</addtitle><date>2010</date><risdate>2010</risdate><issue>4</issue><spage>653</spage><epage>658</epage><pages>653-658</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2010 (4), p.653-658
issn 1439-8516
1439-7617
language eng
recordid cdi_chongqing_backfile_33064638
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects amp
光合速率
希尔伯特变换
有界性
title Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20L2%20Boundedness%20of%20Transform%20the%20Oscillatory%20Hyper-Hilbert%20along%20Curves&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Jie%20Cheng%20CHEN%20Da%20Shah%20FAN%20Xiang%20Rong%20ZHU&rft.date=2010&rft.issue=4&rft.spage=653&rft.epage=658&rft.pages=653-658&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/&rft_dat=%3Cchongqing%3E33064638%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_backfile_330646383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=33064638&rfr_iscdi=true