Loading…

Influence of nitrogen implantation into the buried oxide on the radiation hardness of silicon-on-insulator wafers

In order to improve the total-dose radiation hardness of the buried oxide of separation by implanted oxygen silicon- on-insulator wafers, nitrogen ions were implanted into the buried oxide with a dose of 1016 cm-2, and subsequent annealing was performed at 1100 ℃. The effect of annealing time on the...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2010-10, Vol.19 (10), p.380-385
Main Author: Tang Hai-Ma Zheng Zhong-Shan Zhang En-Xia Yu Fang Li Ning Wang Ning-Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to improve the total-dose radiation hardness of the buried oxide of separation by implanted oxygen silicon- on-insulator wafers, nitrogen ions were implanted into the buried oxide with a dose of 1016 cm-2, and subsequent annealing was performed at 1100 ℃. The effect of annealing time on the radiation hardness of the nitrogen implanted wafers has been studied by the high frequency capacitance-voltage technique. The results suggest that the improvement of the radiation hardness of the wafers can be achieved through a shorter time annealing after nitrogen implantation. The nitrogen-implanted sample with the shortest annealing time 0.5 h shows the highest tolerance to total-dose radiation. In particular, for the 1.0 and 1.5 h annealing samples, both total dose responses were unusual. After 300-krad(Si) irradiation, both the shifts of capacitance-voltage curve reached a maximum, respectively, and then decreased with increasing total dose. In addition, the wafers were analysed by the Fourier transform infrared spectroscopy technique, and some useful results have been obtained.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/19/10/106106