Loading…
On the Covering Number cλ(3,W4^(3),v)
Abstract A t-hyperwhesl (t 〉 3) of length l (or Wz(t) for brevity) is a t-uniform hypergraph (V, E), where t E= {e1,e2,...,el} and vl,v2,...,vt are distinct vertices of V = Ui=1 ei such that for i= 1,...,1, vi,vi+1 ∈ei and ei ∩ ej = P, j ∈ {i - 1, i,i + 1}, where the operation on the subscripts is m...
Saved in:
Published in: | 应用数学学报:英文版 2012, Vol.28 (4), p.631-638 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract A t-hyperwhesl (t 〉 3) of length l (or Wz(t) for brevity) is a t-uniform hypergraph (V, E), where t E= {e1,e2,...,el} and vl,v2,...,vt are distinct vertices of V = Ui=1 ei such that for i= 1,...,1, vi,vi+1 ∈ei and ei ∩ ej = P, j ∈ {i - 1, i,i + 1}, where the operation on the subscripts is modulo 1 and P is a vertex of V which is different from vi, 1 〈 i 〈 l. In this paper, the minimum covering problem of MCλ(3, W(3),v) is investigated. Direct and recursive constructions on MCλ(3, W(3),v) are presented. The covering number cλ(3, W4(3), v) is finally determined for any positive integers v 〉 5 and A. |
---|---|
ISSN: | 0168-9673 1618-3932 |