Loading…
Feature-reduction and semi-simulated data in functio connectivity-based cortical parcellation
Recently, restingstate functional magnetic resonance imaging has been used to parcellate the brain into functionally distinct regions based on the information available in functional connectivity maps. However, brain voxels are not independent units and adjacent voxels are always highly correlated,...
Saved in:
Published in: | 神经科学通报:英文版 2013 (3), p.333-347 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, restingstate functional magnetic resonance imaging has been used to parcellate the brain into functionally distinct regions based on the information available in functional connectivity maps. However, brain voxels are not independent units and adjacent voxels are always highly correlated, so functional connectivity maps contain redundant information, which not only impairs the computational efficiency during clustering, but also reduces the accuracy of clustering results. The aim of this study was to propose featurereduction approaches to reduce the redundancy and to develop semisimulated data with defined ground truth to evaluate these approaches. We proposed a featurereduction approach based on the Affinity Propagation Algorithm (APA) and compared it with the classic feature reduction approach based on Principal Component Analysis (PCA). We tested the two approaches to the parcellation of both semisimulated and real seed regions using the Kmeans algorithm and designed two experiments to evaluate their noise resistance. We found that all functional connectivitymaps (with/without feature reduction) provided correct information for the parcellation of the semi simulated seed region and the computational efficiency was greatly improved by both feature reduction approaches. Meanwhile, the APAbased featurereduction approach outperformed the PCA based approach in noiseresistance. The results suggested that functional connectivity maps can provide correct information for cortical parcellation, and featurereduction does not significantly change the information. Considering the improvement in computational efficiency and the noiseresistance, featurereduction of functional connectivity maps before cortical parcellation is both feasible and necessary. |
---|---|
ISSN: | 1673-7067 1995-8218 |