Loading…
PROPERTY (X^+) FOR SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS OF GENERALIZED EULER TYPE
In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(sup...
Saved in:
Published in: | 数学物理学报:B辑英文版 2013 (5), p.1398-1406 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super) linearity are assumed. W'e present some necessary and sufficient conditions and some tests for the equivalent planar system to have or fail to have property (X^+), which is very important for the existence of periodic solutions and oscillation theory. |
---|---|
ISSN: | 0252-9602 1572-9087 |