Loading…
Darboux Transformations and N-soliton Solutions of Two (2+1)-Dimensional Nonlinear Equations
Two Darboux transformations of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawaka ( CDGKS) equation and (2+1)-dimensional modified Korteweg-de Vries (mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by apply...
Saved in:
Published in: | 理论物理通讯:英文版 2014, Vol.61 (4), p.423-430 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two Darboux transformations of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawaka ( CDGKS) equation and (2+1)-dimensional modified Korteweg-de Vries (mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux trans- formations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the (2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the (2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water. |
---|---|
ISSN: | 0253-6102 |