Loading…
Low Dimensional Cohomology of Hom-Lie Algebras and q-deformed W(2, 2) Algebra
This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Li...
Saved in:
Published in: | 数学学报:英文版 2014 (6), p.1073-1082 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed W(2, 2) algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie algebras.As application, we compute all αk-derivations and in particular the first cohomology group of the q-deformed W(2, 2) algebra. |
---|---|
ISSN: | 1439-8516 1439-7617 |