Loading…
SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER a IN SEVERAL COMPLEX VARIABLESc
In this article, first, the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order B on the unit ball in complex Ba- nach spaces are given. Second, the sharp estimates of all homogeneous expansions for the above generalized mappings on the unit poly...
Saved in:
Published in: | 数学物理学报:B辑英文版 2016, Vol.36 (6), p.1804-1818 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, first, the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order B on the unit ball in complex Ba- nach spaces are given. Second, the sharp estimates of all homogeneous expansions for the above generalized mappings on the unit polydisk in (in are also established. In particular, the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings (include quasi-convex mappings of type A and quasi-convex mappings of type B) in several complex variables are get accordingly. Our results state that a weak version of the Bieber- bach conjecture for quasi-convex mappings of type B and order a in several complex variables is proved, and the derived conclusions are the generalization of the classical results in one complex variable. |
---|---|
ISSN: | 0252-9602 1572-9087 |