Loading…

Hypothermia and room air resuscitation in NT2-N neurons, immature rats and newborn pigs

Perinatal asphyxia remains one of the major causes of perinatal mortality and morbidity worldwide. Mild therapeutic hypothermia reduces brain injury after perinatal asphyxia. There is an ongoing search for strategies to further improve outcome, including best practice resuscitation and interventions...

Full description

Saved in:
Bibliographic Details
Main Author: Dalen, Marit Lunde
Format: Dissertation
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perinatal asphyxia remains one of the major causes of perinatal mortality and morbidity worldwide. Mild therapeutic hypothermia reduces brain injury after perinatal asphyxia. There is an ongoing search for strategies to further improve outcome, including best practice resuscitation and interventions that can be used in combination with hypothermia. The use of supplemental oxygen during resuscitation causes a number of harmful effects including increased cerebral injury. It is not known whether hypothermic neuroprotection can be improved by avoiding supplemental oxygen during resuscitation. In this work, in vitro neurons, neonatal rats and newborn pigs were used as experimental models to study the effect of hyperoxic reoxygenation on hypothermic neuroprotection after perinatal asphyxia. A neuroprotective effect of therapeutic hypothermia was confirmed in all three models. Also, pigs treated with hypothermia had less expression of DNA repair enzymes. Hyperoxic reoxygenation resulted in a significant overshoot in oxygen tension in the piglet brain. Increased injury following hyperoxic reoxygenation was evident only in the rat model, where reoxygenation in 100% O2 increased brain injury and worsened neurological performance. Hypothermia reduced brain injury in the rat both after reoxygenation in air and in 100% O2, but hypothermia after 100% O2 gave no net protection. The results indicate that the neuroprotective effect of hypothermia is counteracted by using 100% O2 during reoxygenation. Thus, one way to optimise outcome after perinatal asphyxia is to avoid supplemental oxygen during resuscitation before therapeutic hypothermia. This thesis supports the combined use of the two recommendations in the new international resuscitation guidelines: to use therapeutic hypothermia for hypoxic-ischaemic encephalopathy, and to use air for resuscitation if supplemental oxygen can be avoided.