Loading…

A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity

In this paper, we present and analyze a new mixed finite element formulation of a general family of quasi-static multiple-network poroelasticity (MPET) equations. The MPET equations describe flow and deformation in an elastic porous medium that is permeated by multiple fluid networks of differing ch...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on scientific computing 2019-01, Vol.41 (2), p.A722-A747
Main Authors: Lee, J. J., Piersanti, E., Mardal, K.-A., Rognes, M. E.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present and analyze a new mixed finite element formulation of a general family of quasi-static multiple-network poroelasticity (MPET) equations. The MPET equations describe flow and deformation in an elastic porous medium that is permeated by multiple fluid networks of differing characteristics. As such, the MPET equations represent a generalization of Biot's equations, and numerical discretizations of the MPET equations face similar challenges. Here, we focus on the nearly incompressible case for which standard mixed finite element discretizations of the MPET equations perform poorly. Instead, we propose a new mixed finite element formulation based on introducing an additional total pressure variable. By presenting energy estimates for the continuous solutions and a priori error estimates for a family of compatible semidiscretizations, we show that this formulation is robust for nearly incompressible materials, small storage coefficients, and small or vanishing transfer between networks. These theoretical results are corroborated by numerical experiments. Our primary interest in the MPET equations stems from the use of these equations in modeling interactions between biological fluids and tissues in physiological settings. So, we additionally present physiologically realistic numerical results for blood and interstitial fluid flow interactions.
ISSN:1064-8275
1095-7197
DOI:10.1137/18M1182395