Loading…
The geometry of SDP-exactness in quadratic optimization
Consider the problem of minimizing a quadratic objective subject to quadratic equations. We study the semialgebraic region of objective functions for which this problem is solved by its semidefinite relaxation. For the Euclidean distance problem, this is a bundle of spectrahedral shadows surrounding...
Saved in:
Published in: | Mathematical programming 2020-07, Vol.182 (1-2), p.399-428 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Consider the problem of minimizing a quadratic objective subject to quadratic equations. We study the semialgebraic region of objective functions for which this problem is solved by its semidefinite relaxation. For the Euclidean distance problem, this is a bundle of spectrahedral shadows surrounding the given variety. We characterize the algebraic boundary of this region and we derive a formula for its degree. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-019-01399-8 |