Loading…

Cellular effects of factor VII activating protease (FSAP)

Factor VII activating protease (FSAP) is a circulating serine protease of broad specificity that is likely to be involved in many pathophysiological processes. The activation of the circulating zymogen form of FSAP by histones, released from damaged cells, underlines its roles in regulating host res...

Full description

Saved in:
Bibliographic Details
Published in:Thrombosis research 2020-04, Vol.188, p.74-78
Main Authors: Byskov, Kristina, Etscheid, Michael, Kanse, Sandip M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Factor VII activating protease (FSAP) is a circulating serine protease of broad specificity that is likely to be involved in many pathophysiological processes. The activation of the circulating zymogen form of FSAP by histones, released from damaged cells, underlines its roles in regulating host responses to tissue damage and inflammation. Some of the direct cellular effects of FSAP are mediated through protease-activated receptors (PARs). Knock-down of each one of the four PARs in endothelial cells indicated that PAR-1 and -3 are involved in regulating endothelial permeability in response to FSAP. Overexpression of PARs in cell lines led to the conclusion that PAR-2 and -1 were the main receptors for FSAP. Studies with synthetic peptides and receptor mutants demonstrate that FSAP cleaves PAR-1 and -2 at their canonical cleavage site. However, PAR-1 is not activated by FSAP in all cells, which may be related to other, as yet, undefined factors. Inhibition of apoptosis by FSAP is mediated through PAR-1 and was observed in neurons, astrocytes and A549 cells. FSAP also mediates cellular effects by modulating the activity of growth factors, generation of bradykinin, C5a and C3a generation or histone inactivation. These cellular effects need to be further investigated at the in vivo level.
ISSN:0049-3848
1879-2472
DOI:10.1016/j.thromres.2020.02.010