Loading…

Elastoplastic source model for microseismicity and acoustic emission

SUMMARY The microseismic events can often be characterized by a complex non-double couple source mechanism. Recent laboratory studies recording the acoustic emission during rock deformation help connecting the components of the seismic moment tensor with the failure process. In this complementary co...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2021-10, Vol.227 (1), p.33-53
Main Authors: Minakov, Alexander, Yarushina, Viktoriya
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY The microseismic events can often be characterized by a complex non-double couple source mechanism. Recent laboratory studies recording the acoustic emission during rock deformation help connecting the components of the seismic moment tensor with the failure process. In this complementary contribution, we offer a mathematical model which can further clarify these connections. We derive the seismic moment tensor based on classical continuum mechanics and plasticity theory. The moment tensor density can be represented by the product of elastic stiffness tensor and the plastic strain tensor. This representation of seismic sources has several useful properties: (i) it accounts for incipient faulting as a microseismicity source mechanism, (ii) it does not require a pre-defined fracture geometry, (iii) it accounts for both shear and volumetric source mechanisms, (iv) it is valid for general heterogeneous and anisotropic rocks and (v) it is consistent with elasto-plastic geomechanical simulators. We illustrate the new approach using 2-D numerical examples of seismicity associated with cylindrical openings, analogous to wellbore, tunnel or fluid-rich conduit and provide a simple analytic expression of the moment density tensor. We compare our simulation results with previously published data from laboratory and field experiments. We consider four special cases corresponding to ‘dry’ elastically homogeneous and elastically heterogeneous isotropic rocks, ‘dry’ transversely isotropic rocks and ‘wet’ isotropic rocks. The model highlights theoretical links between stress state, geomechanical parameters and conventional representations of the moment tensor such as Hudson source type parameters.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggab207