Loading…
Effects of water browning on freshwater biodiversity: the case of the predatory phantom midge Chaoborus nyblaei
Water browning, due to increased runoff of terrestrial dissolved organic carbon (DOC), has recently gained considerable attention. While it is well settled how browning affects light regime and thereby aquatic primary production, other impacts on the aquatic biota is less explored. Water browning sh...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water browning, due to increased runoff of terrestrial dissolved organic carbon (DOC), has recently gained considerable attention. While it is well settled how browning affects light regime and thereby aquatic primary production, other impacts on the aquatic biota is less explored. Water browning shelters against UV radiation, and may thus benefit range expansion of UV sensitive organisms, such as midges. We mapped occurrence of Chaoborids in 148 subalpine and alpine ponds in Norway, and identified an apparent threshold for their presence around 3 mg total organic carbon (TOC) l−1. The field study was complemented with laboratory experiments on Chaoborus nyblaei (Zetterstedt, 1838), to test if this species is able to identify and select water colour (concentrations of DOC) for oviposition. Number of egg rafts on brown water tanks was significantly higher than in clear water tanks, indicating that C. nyblaei performs oviposition habitat selection. Chaoborids are effective predators in planktonic habitats, and our findings support the hypothesis that climate change may cascade through the ecosystem and promote range shifts of species due to alternated habitat frame conditions. |
---|